pakistani families
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 54)

H-INDEX

17
(FIVE YEARS 2)

2023 ◽  
Vol 83 ◽  
Author(s):  
T. Batool ◽  
S. Irshad ◽  
K. Mahmood

Abstract Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be “disease causing,” with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.


Author(s):  
Salma Nawaz ◽  
Mouna Koser ◽  
Amina Boota ◽  
Malik Shahzad Shabbir

The objective of this research paper is to analyze the status of women in Pakistan in other words status provided to women in Pakistani family structure and also to analyze its status in Islam. This study describes to what extent, women were oppressed and abused by way of every attainable method in societies. This study has collected secondary data from books, research papers, journals and different reports. It is noted that women facing violence at various stages in their life in Pakistan. The teaching of Islam is neglected here regarding women's status. It was concluded that, With regards to Pakistan, the indispensable issue is that our religion Islam has not had the option to cancel the exceptionally old un-Islamic and furthermore cruel social indecencies that are being exercised in the land. Hence, ancestral family, tribal imagery has gotten more prevailing and helpful than the confidence of Islam. So it was recommended that the government should maintain the status of women according to teaching of Islam.


2021 ◽  
Vol 14 (12) ◽  
pp. 1843-1851
Author(s):  
Muhammad Dawood ◽  
◽  
Taj Ud Din ◽  
Irfan Ullah Shah ◽  
Niamat Khan ◽  
...  

AIM: To investigate the genetic basis of autosomal recessive retinitis pigmentosa (arRP) in two consanguineous/ endogamous Pakistani families. METHODS: Whole exome sequencing (WES) was performed on genomic DNA samples of patients with arRP to identify disease causing mutations. Sanger sequencing was performed to confirm familial segregation of identified mutations, and potential pathogenicity was determined by predictions of the mutations’ functions. RESULTS: A novel homozygous frameshift mutation [NM_000440.2:c.1054delG, p. (Gln352Argfs*4); Chr5:g.149286886del (GRCh37)] in the PDE6A gene in an endogamous family and a novel homozygous splice site mutation [NM_033100.3:c.1168-1G>A, Chr10:g.85968484G>A (GRCh37)] in the CDHR1 gene in a consanguineous family were identified. The PDE6A variant p. (Gln352Argfs*4) was predicted to be deleterious or pathogenic, whilst the CDHR1 variant c.1168-1G>A was predicted to result in potential alteration of splicing. CONCLUSION: This study expands the spectrum of genetic variants for arRP in Pakistani families.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1899
Author(s):  
Ambrin Fatima ◽  
Uzma Abdullah ◽  
Muhammad Farooq ◽  
Yuan Mang ◽  
Mana M. Mehrjouy ◽  
...  

Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis. We recruited two multiplex Pakistani families, having 11 patients and 19 unaffected individuals in three generations. We performed genome-wide SNP genotyping, next-generation mate pairing and whole-exome sequencing of selected members to unveil genetic components. Candidate variants were screened in unrelated cohorts of 508 cases, 300 controls and fifteen families (with 51 affected and 47 unaffected individuals) of Pakistani origin. The structural impact of substituted residues was assessed through in silico modeling using iTASSER. In one family, we identified a rare novel microduplication (5q14.1_q14.2) encompassing critical genes involved in glutamate signaling, such as CMYA5, HOMER and RasGRF2. The second family segregates two ultra-rare, predicted pathogenic variants in the GRIN2A (NM_001134407.3: c.3505C>T, (p.R1169W) and in the NRG3 NM_001010848.4: c.1951G>A, (p.E651K). These genes encode for parts of AMPA and NMDA receptors of glutamatergic neurotransmission, respectively, and the variants are predicted to compromise protein function by destabilizing their structures. The variants were absent in the aforementioned cohorts. Our findings suggest that rare, highly penetrant variants of genes involved in glutamatergic neurotransmission are contributing to the etiology of schizophrenia in these families. It also highlights that genetic investigations of multiplex, multigenerational families could be a powerful approach to identify rare genetic variants involved in complex disorders.


2021 ◽  
Vol 38 (1) ◽  
Author(s):  
Ehtisham ul Haq Makhdoom ◽  
Haseeb Anwar ◽  
Shahid Mahmood Baig ◽  
Ghulam Hussain

Background & Objectives: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. Methods: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. Results: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. Conclusion: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling. doi: https://doi.org/10.12669/pjms.38.1.4464 How to cite this:Makhdoom EH, Anwar H, Baig SM, Hussain G. Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing Primary microcephaly in consanguineous Pakistani families. Pak J Med Sci. 2022;38(1):---------.  doi: https://doi.org/10.12669/pjms.38.1.4464 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ihsan Ullah ◽  
Isabel Ottlewski ◽  
Wasim Shehzad ◽  
Amjad Riaz ◽  
Sadaqat Ijaz ◽  
...  

Abstract Background Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant morbidity and cost. Common variants in the calcium sensing receptor gene (CaSR) have been associated with NL. Rare inactivating CaSR variants classically cause hyperparathyroidism, hypercalcemia and hypocalciuria. However, NL and familial hypercalciuria have been paradoxically associated with select inactivating CaSR variants in three kindreds from Europe and Australia. Methods To discover novel NL-associated CaSR variants from a geographically distinct cohort, 57 Pakistani families presenting with pediatric onset NL were recruited. The CaSR locus was analyzed by directed or exome sequencing. Results We detected a heterozygous and likely pathogenic splice variant (GRCh37 Chr3:122000958A>G; GRCh38 Chr3:12228211A>G; NM_000388:c.1609-2A>G) in CaSR in one family with recurrent calcium oxalate stones. This variant would be predicted to cause exon skipping and premature termination (p.Val537Metfs*49). Moreover, a splice variant of unknown significance in an alternative CaSR transcript (GRCh37 Chr3:122000929G>C; GRCh38 Chr3:122282082G >C NM_000388:c.1609-31G >C NM_001178065:c.1609-1G >C) was identified in two additional families. Conclusions Sequencing of the CaSR locus in Pakistani stone formers reveals a novel loss-of-function variant, expanding the connection between the CaSR locus and nephrolithiasis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chunyu Liu ◽  
Muhammad Ajmal ◽  
Zaineb Akram ◽  
Tariq Ghafoor ◽  
Muhammad Farhan ◽  
...  

AbstractOsteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diagnosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.


2021 ◽  
Vol 15 (10) ◽  
pp. 2546-2549
Author(s):  
Muhammad Ikram Ullah ◽  
Muhammad Shakil ◽  
Adnan Riaz

Aim: The objective of the present study was to recruit congenital families of oculocutaneous albinism (OCA) and mutations in TYR and OCA2 genes are identified, which is further expanding the mutation spectrum in this population. Methods: Two consanguineous families with OCA were recruited and whole blood was collected. Clinical examination was carried out to determine the visual acuity and related eye, skin and hair examinations. Genomic DNA was extracted by standard phenol-chloroform method. Targeted exome sequencing by TruSight one sequencing panel sequencing was carried out. Sanger sequencing was performed for mutation detection in tyrosinase (TYR) and the OCA2 genes and co-segregation in OCA families. Results: Clinically, the affected individuals of two OCA families showed clinical characteristics including white to pale skin, white or blonde hairs, irritant to light, nystagmus and reduced vision. DNA sequencing showed the genetic mutation of TYR and OCA2 genes in two OCA families. In family 1, the nucleotide variant (c.1255G>A; p.Gly419Arg) was detected inTYR gene, while in another family, the splice-site variant c.1045-15T>G was identified in OCA2. Conclusion: This study concluded that identification of TYR and OCA2 mutations in OCA disease are commonly associated with the population where the consanguinity is persistent. These findings expanded the molecular basis of oculocutaneous albinism in Pakistani families and established the mode of genetic counselling and for diagnostic outcome. Keywords: Consanguineous families; Oculocutaneous albinism (OCA); mutations; tyrosinase (TYR); OCA2 gene.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Memoona Rasheed ◽  
Valeed Khan ◽  
Ricardo Harripaul ◽  
Maimoona Siddiqui ◽  
Madiha Amin Malik ◽  
...  

Abstract Background Intellectual disability (ID) is a phenotypically and genetically heterogeneous disorder. Methods In this study, genome wide SNP microarray and whole exome sequencing are used for the variant identification in eight Pakistani families with ID. Beside ID, most of the affected individuals had speech delay, facial dysmorphism and impaired cognitive abilities. Repetitive behavior was observed in MRID143, while seizures were reported in affected individuals belonging to MRID137 and MRID175. Results In two families (MRID137b and MRID175), we identified variants in the genes CCS and ELFN1, which have not previously been reported to cause ID. In four families, variants were identified in ARX, C5orf42, GNE and METTL4. A copy number variation (CNV) was identified in IL1RAPL1 gene in MRID165. Conclusion These findings expand the existing knowledge of variants and genes implicated in autosomal recessive and X linked ID.


Sign in / Sign up

Export Citation Format

Share Document