Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern

2013 ◽  
Vol 20 (3) ◽  
pp. 334-343 ◽  
Author(s):  
Dan L. Warren ◽  
Amber N. Wright ◽  
Stephanie N. Seifert ◽  
H. Bradley Shaffer
2010 ◽  
Vol 4 (1) ◽  
pp. e585 ◽  
Author(s):  
Camila González ◽  
Ophelia Wang ◽  
Stavana E. Strutz ◽  
Constantino González-Salazar ◽  
Víctor Sánchez-Cordero ◽  
...  

The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
Benedictus Freeman ◽  
Julia Sunnarborg ◽  
A Townsend Peterson

Abstract A detailed understanding of species’ responses to global climate change provides an informative baseline for designing conservation strategies to optimize protection of biodiversity. However, such information is either limited or not available for many tropical species, making it difficult to incorporate climate change into conservation planning for most tropical species. Here, we used correlative ecological niche models to assess potential distributional responses of 3 range-restricted West African birds, Timneh Parrot (Pscittacus erithracus timneh), Ballman’s Malimbe (Malimbus ballmanni), and White-necked Rockfowl (Picathartes gymnocephalus), to global climate change. We used primary biodiversity occurrence records for each species obtained from the Global Biodiversity Information Facility, eBird, and VertNet; for environmental data, we used climatic variables for the present and future, the latter characterized by 2 IPCC representative concentration pathways (4.5, 8.5) future emissions scenarios and 27 general circulation models for a 2050 time horizon. We found broad present-day potential distributions with respect to climate for all 3 species. Future potential distributions for Ballman’s Malimbe and White-necked Rockfowl tended to be stable and closely similar to their present-day distributions; by contrast, we found marked climate change–driven potential range loss across the range of Timneh Parrot. Our results suggest that impacts of climate change on the present distributions of West African birds will in some cases be minimal, but that individual species may respond differently to future conditions. Thus, to optimize conservation of these species, and of bird diversity in general, we recommend that regional-to-national species conservation action plans incorporate climate change adaptation strategies for individual species; ecological niche models could provide an informative baseline information for this planning and prioritization.


2016 ◽  
Vol 23 (1) ◽  
pp. 164-176 ◽  
Author(s):  
Dana H. Ikeda ◽  
Tamara L. Max ◽  
Gerard J. Allan ◽  
Matthew K. Lau ◽  
Stephen M. Shuster ◽  
...  

2018 ◽  
Author(s):  
OCTO

Marine protected areas (MPAs) designate a static spatial zone for protection from some, or all, human activities. With climate change, species are likely to shift in response to warming oceans, quite possibly outside the boundaries of the MPAs that were meant to offer protection. In addition, the designation of an area as a partially-protected MPA may spur unintended human impacts. So how do you plan for climate change and human uses when species migrate? Ecological niche models may offer a solution.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniela A. Rivera-Aguirre ◽  
Miguel A. Ortiz- Acosta ◽  
Héctor Bernal-Mendoza ◽  
Gerardo Sánchez-Rojas ◽  
O. Eric Ramírez-Bravo ◽  
...  

Agricultural systems are highly susceptible to climate change; however, little is known about the vulnerability of native or exotic species. In this work, we evaluated the impact of climate change on the potential distribution of three species of agricultural interest native to Mexico (cotton, peanut, and cocoa), through ecological niche models looking at the year 2050. According to the 22 General Circulation Models (GCMs) under two Representative Concentration Pathways (RCP), 4.5 and 8.5, we found increases in the potential distribution of the three species. The species with the greatest increase is cotton, finding conditions in the future in states such as Tabasco or throughout the Yucatan Peninsula.


2016 ◽  
Vol 47 (4) ◽  
pp. 349-354 ◽  
Author(s):  
Alemeh Mazangi ◽  
Hamid Ejtehadi ◽  
Omid Mirshamsi ◽  
Fereshte Ghassemzadeh ◽  
Seyyed Saeed Hosseinianyousefkhani

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6281 ◽  
Author(s):  
Marlon E. Cobos ◽  
A. Townsend Peterson ◽  
Narayani Barve ◽  
Luis Osorio-Olvera

Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. Results This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Discussion Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.


Sign in / Sign up

Export Citation Format

Share Document