Genetic isolation by distance reveals restricted dispersal across a range of life histories: implications for biodiversity conservation planning across highly variable marine environments

2015 ◽  
Vol 21 (6) ◽  
pp. 698-710 ◽  
Author(s):  
Daniel Wright ◽  
Jacqueline M. Bishop ◽  
Conrad A. Matthee ◽  
Sophie von der Heyden
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Banu Kaya özdemirel

Cross taxa congruence was investigated between butterfly taxa and ecological community for fine spatial scale (10 × 10 km² UTM grids) in north-eastern part of Turkey. The study area was evaluated within the scope of systematic conservation planning, and analyses were performed for sets of priority protected areas composed using complementarity-based site selection software Marxan. Cross taxa congruence was subsequently examined both in species richness and ecologic complementarity. Accordingly, it has been observed that the cross-taxon congruence between butterfly taxa and ecological community was relatively better than the results of previous studies. Another remarkable finding is that ecological community was a more robust surrogate than butterfly taxa. Although the results are valuable for conservation studies, they highlight the fact that a simple surrogate-based site selection would be inadequate to represent overall biodiversity.  The weakness of congruence patterns among surrogates would also lead to gaps in biodiversity conservation. These findings therefore draw attention to the necessities of incorporating surrogates of distinct ecology or some other surrogates like environmental parameters into conservation planning. Otherwise, there may be mistakes regarding species representation and the vast majority of species may be misrepresented in protected areas and protected area plans. At this point, it should be emphasized that understating cross taxa congruence and/or relationships is a key component for efficient biodiversity conservation.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


BioScience ◽  
2019 ◽  
Vol 70 (1) ◽  
pp. 48-59 ◽  
Author(s):  
Skipton N C Woolley ◽  
Scott D Foster ◽  
Nicholas J Bax ◽  
Jock C Currie ◽  
Daniel C Dunn ◽  
...  

Abstract Bioregions are important tools for understanding and managing natural resources. Bioregions should describe locations of relatively homogenous assemblages of species occur, enabling managers to better regulate activities that might affect these assemblages. Many existing bioregionalization approaches, which rely on expert-derived, Delphic comparisons or environmental surrogates, do not explicitly include observed biological data in such analyses. We highlight that, for bioregionalizations to be useful and reliable for systems scientists and managers, the bioregionalizations need to be based on biological data; to include an easily understood assessment of uncertainty, preferably in a spatial format matching the bioregions; and to be scientifically transparent and reproducible. Statistical models provide a scientifically robust, transparent, and interpretable approach for ensuring that bioregions are formed on the basis of observed biological and physical data. Using statistically derived bioregions provides a repeatable framework for the spatial representation of biodiversity at multiple spatial scales. This results in better-informed management decisions and biodiversity conservation outcomes.


2019 ◽  
Vol 67 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Shotaro Hirase ◽  
Ayumi Tezuka ◽  
Atsushi J. Nagano ◽  
Kiyoshi Kikuchi ◽  
Wataru Iwasaki

2018 ◽  
Vol 16 (3) ◽  
pp. 166-167
Author(s):  
Ubirajara Oliveira ◽  
Britaldo Silveira Soares-Filho ◽  
Adriano Pereira Paglia ◽  
Antonio D. Brescovit ◽  
Claudio J.B. de Carvalho ◽  
...  

2012 ◽  
Vol 49 (6) ◽  
pp. 1247-1255 ◽  
Author(s):  
Tom H. Oliver ◽  
Richard J. Smithers ◽  
Sallie Bailey ◽  
Clive A. Walmsley ◽  
Kevin Watts

Zootaxa ◽  
2013 ◽  
Vol 3630 (2) ◽  
pp. 379-384 ◽  
Author(s):  
ENRICO RICCHIARDI ◽  
RENZO PERISSINOTTO

A dedicated “Bioblitz” survey of the Ntinini Nature Reserve was organized and coordinated by Ezemvelo KwaZulu- Natal (EKZN) Wildlife, during the period 16–18 November 2010. The main aim of the Bioblitz was to provide biodiversity data that could assist in assessing the necessity of a formal proclamation for the protection of the reserve, within the scope of the integrated Biodiversity Conservation Planning of EKZN Wildlife


Author(s):  
Petri Kemppainen ◽  
Zitong Li ◽  
Pasi Rastas ◽  
Ari Löytynoja ◽  
Bohao Fang ◽  
...  

AbstractRepeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions, or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures. In one cross, PR mapped to linkage group 7 (LG7) containing the gene Pitx1, known to control pelvic reduction also in the three-spined stickleback. In the two other crosses, PR was polygenic and attributed to ten novel QTL, of which 90% were unique to specific crosses. When screening the genomes from 27 different populations for deletions in the Pitx1 regulatory element, these were only found in the population in which PR mapped to LG7, even though the morphological data indicated large effect QTL for PR in several other populations as well. Consistent with the available theory and simulations parameterised on empirical data, we hypothesise that the observed variability in genetic architecture of PR is due to heterogeneity in the spatial distribution of standing genetic variation caused by strong population structuring and genetic isolation by distance in the sea.


Sign in / Sign up

Export Citation Format

Share Document