scholarly journals A demographic approach to evaluating the impact of stressors on bumble bee colonies

2017 ◽  
Vol 42 (2) ◽  
pp. 221-229 ◽  
Author(s):  
JAMES E. CRESSWELL
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William G. Meikle ◽  
John J. Adamczyk ◽  
Milagra Weiss ◽  
Janie Ross ◽  
Chris Werle ◽  
...  

AbstractThe effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.


Author(s):  
Belén Branchiccela ◽  
Loreley Castelli ◽  
Sebastián Díaz-Cetti ◽  
Ciro Invernizzi ◽  
Yamandú Mendoza ◽  
...  

2019 ◽  
Vol 284 ◽  
pp. 106594 ◽  
Author(s):  
Nelson J. Milano ◽  
Aaron L. Iverson ◽  
Brian A. Nault ◽  
Scott H. McArt

Apidologie ◽  
2017 ◽  
Vol 48 (5) ◽  
pp. 703-715 ◽  
Author(s):  
Alexander McMenamin ◽  
Fiona Mumoki ◽  
Maryann Frazier ◽  
Joseph Kilonzo ◽  
Bernard Mweu ◽  
...  

1980 ◽  
Vol 112 (3) ◽  
pp. 321-326 ◽  
Author(s):  
N. Pomeroy ◽  
R. C. Plowright

AbstractTwo bumble bee observation hive designs are described. Both have a sloping floor to support peripheral brood clumps. One is temperature controlled, using insulated resistance wire as an internal heat source. The other is moulded from a concrete mixture consisting of horticultural Perlite, cement, and plaster of Paris. Techniques for the sanitation, feeding, and handling of laboratory colonies are described.


1980 ◽  
Vol 7 (4) ◽  
pp. 287-291 ◽  
Author(s):  
Robin E. Owen ◽  
F. H. Rodd ◽  
R. C. Plowright
Keyword(s):  

2021 ◽  
Author(s):  
Kilea Ward ◽  
Hongmei Li-Byarlay

Molecular damage caused by oxidative stress may lead to organismal aging and resulted in acute mortality in organisms. Oxidative stress resistance and longevity are closely linked. Honey bees are the most important managed pollinator in agriculture but the long-term survival of honey bees is seriously threatened. Feral honey bee colonies displayed persistence to Varroa mites. However, it is unknown whether feral honey bees are stress-resistant or survive longer than managed bee populations. More work is needed to determine the impact of oxidative stress on honey bee health and survival. We used the paired colony design to determine the lifespan and levels of oxidative stress on worker bees from either a feral or a managed colony. Each pair of colonies shared similar foraging resources. Results exhibit longer survival time and lifespans of foragers in feral colonies than the managed colonies. The levels of oxidative stress from the lipid damage of feral colonies are higher than the managed colonies, indicating a tolerant mechanism not a repair mechanism to survive. Our study provided new insights into colony difference of physiology and oxidative stress resistance between feral honey bees and commercial stocks.


Sign in / Sign up

Export Citation Format

Share Document