Resource Availability and Timing of Reproduction in Bumble Bee Colonies (Hymenoptera: Apidae)

1986 ◽  
Vol 15 (3) ◽  
pp. 750-755 ◽  
Author(s):  
Michael A. Bowers
2019 ◽  
Vol 284 ◽  
pp. 106594 ◽  
Author(s):  
Nelson J. Milano ◽  
Aaron L. Iverson ◽  
Brian A. Nault ◽  
Scott H. McArt

1980 ◽  
Vol 112 (3) ◽  
pp. 321-326 ◽  
Author(s):  
N. Pomeroy ◽  
R. C. Plowright

AbstractTwo bumble bee observation hive designs are described. Both have a sloping floor to support peripheral brood clumps. One is temperature controlled, using insulated resistance wire as an internal heat source. The other is moulded from a concrete mixture consisting of horticultural Perlite, cement, and plaster of Paris. Techniques for the sanitation, feeding, and handling of laboratory colonies are described.


1980 ◽  
Vol 7 (4) ◽  
pp. 287-291 ◽  
Author(s):  
Robin E. Owen ◽  
F. H. Rodd ◽  
R. C. Plowright
Keyword(s):  

2020 ◽  
Author(s):  
Jacob G. Holland ◽  
Shinnosuke Nakayama ◽  
Maurizio Porfiri ◽  
Oded Nov ◽  
Guy Bloch

ABSTRACTSpecialization and plasticity are important for many forms of collective behavior, but the interplay between these factors is little understood. In insect societies, workers are often predisposed to specialize in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labor. Workers may also plastically switch between tasks or vary their effort. The degree to which predisposed specialization limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 freely-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse or reduced (“homogeneous”) worker body size distribution, over two trials. Pooling both trials, diverse colonies did better in several indices of colony performance. The importance of body size was further demonstrated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioral profiles based on several thousand observations, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioral specialization and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of predisposed (size-diverse) specialists under certain conditions, but also suggest that plasticity or effort, can compensate for reduced (size-related) specialization. Thus, we suggest that an intricate interplay between specialization and plasticity is functionally adaptive in bumble bee colonies.


1998 ◽  
Vol 8 (4) ◽  
pp. 590-594 ◽  
Author(s):  
M.S. Stanghellini ◽  
J.T. Ambrose ◽  
J.R. Schultheis

The effectiveness of bumble bees, Bombus impatiens Cresson, and honey bees, Apis mellifera L., on the pollination of cucumber, Cucumis sativus L., and watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai, was compared under field conditions. Comparisons were based on fruit abortion rates and seed set as influenced by bee type (honey bee or bumble bee) and the number of bee visits to treatment flowers (1, 6, 12, and 18 bee visits), plus two controls: a no-visit treatment and an open-pollinated (unrestricted visitation) treatment. For both crops, an increased number of bee visits had a strong positive effect on fruit and seed set. All cucumber and watermelon flowers bagged to prevent insect visitation aborted, demonstrating the need for active transfer of pollen between staminate and pistillate flowers. Bumble bee-visited flowers consistently had lower abortion rates and higher seed sets in the cucumber and watermelon studies than did honey bee-visited flowers when compared at the same bee visitation level. Only slight differences in fruit abortion rates were detected between bee types in the watermelon study. However, abortion rates for bumble bee-visited flowers were consistently less than those for honey bee-visited flowers when compared at equal bee visitation levels, with one exception at the 12 bee visit level. As the number of honey bee colonies continues to decline due to parasitic mite pests and based on the data obtained, we conclude that bumble bees have a great potential to serve as a supplemental pollinator for cucumbers, watermelons, and possibly other vine crops, when honey bees available for rental are in limited supply.


2018 ◽  
Author(s):  
Evan C Palmer-Young ◽  
Thomas R Raffel ◽  
Quinn S McFrederick

ABSTRACTCompetition between organisms is often mediated by environmental factors including temperature. In animal intestines, nonpathogenic symbionts compete physically and chemically against pathogens, with consequences for host infection. We used metabolic theory-based models to characterize differential responses to temperature of a bacterial symbiont and a co-occurring trypanosomatid parasite of bumble bees, which regulate body temperature during flight and incubation. We hypothesized that inhibition of parasites by bacterial symbionts would increase with temperature, due to symbionts having higher optimal growth temperatures than parasites.We found that a temperature increase over the range measured in bumble bee colonies would favor symbionts over parasites. As predicted by our hypothesis, symbionts reduced the optimal growth temperature for parasites, both in direct competition and when parasites were exposed to symbiont spent medium. Inhibitory effects of the symbiont increased with temperature, reflecting accelerated growth and acid production by symbionts. Our results indicate that high temperatures, whether due to host endothermy or environmental factors, can enhance the inhibitory effects of symbionts on parasites. Temperature-modulated manipulation of microbiota could be one explanation for fever- and heat-induced reductions of infection in animals, with consequences for diseases of medical and conservation concern.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 191 ◽  
Author(s):  
Arran Greenop ◽  
Nevine Mica-Hawkyard ◽  
Sarah Walkington ◽  
Andrew Wilby ◽  
Samantha M Cook ◽  
...  

Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.


Sign in / Sign up

Export Citation Format

Share Document