scholarly journals Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control

2014 ◽  
Vol 39 (8) ◽  
pp. 1343-1348 ◽  
Author(s):  
Junhong Zhou ◽  
Ying Hao ◽  
Ye Wang ◽  
Azizah Jor'dan ◽  
Alvaro Pascual-Leone ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 189-198
Author(s):  
Soudabeh Raeisi ◽  
◽  
Seyed Kazem Mousavi Sadati ◽  
Mojtaba Azimian ◽  
◽  
...  

Purpose: Physicians report balance disorders and fatigue as the symptoms of Multiple Sclerosis (MS) disease. The present study compares the effect of transcranial Direct Current Stimulation (tDCS) and core stability training on the balance and disability of patients with MS. Methods: This is a pre-test, post-test experiment study. The statistical population included all patients with MS who reffered to Rofaydeh Rehabilitation Hospital in Tehran City, Iran, in the winter of 2019. A total of 30 male and female patients aged 27-70 years were selected through available and purposive sampling methods and then randomly divided into experimental and control groups (each group 15 persons). The initial measurements of the participants’ kinetic variables of postural control were carried out by the posturography device, and afterward, Kurtzke Expanded Disability Status Scale (EDSS) was employed to measure disability. The participants’ training included core stability training for 8 weeks (30-40 min, 3 sessions per week) with 20 min online cerebellar transcranial direct current stimulation, 2 sessions per week (The first and third sessions). Then, the research variables were measured again. Results: The results demonstrated the significant influence of cerebellar tDCS on the variables of postural control equilibrium in the second sensory condition (P<0.001), third sensory condition (P<0.001), fourth sensory condition (P<0.001), fifth sensory condition (P=0.034), and combine equilibrium (P<0.001). Besides, the cerebellar current stimulation enhanced the sensory performance of the experimental group in using the vestibular system input data (P<0.001) and vision (P<0.001), but it had no significant effect on the ability to use somatosensory input (P=0.203) and vision preference (P=0.343). This research also revealed that the cerebellar current stimulation decreased EDSS in MS patients (P=0.026). Conclusion: The cerebellar tDCS has a beneficial effect on balance, EDSS, and modified fatigue impact scale in MS patients. The study findings also indicate that the cerebellum, vestibular system, and visual system are related, and they have an impact on balance, and cerebellar stimulation can facilitate learning motor skills.


2021 ◽  
Author(s):  
Matthew Weightman ◽  
John Stuart-Brittain ◽  
Alison Hall ◽  
Chris Miall ◽  
Ned Jenkinson

There is a fundamental discord between the foundational theories underpinning motor learning and how we currently apply transcranial direct current stimulation (TDCS). The former is dependent on tight coupling of events; the latter is conducted with very low temporal resolution, typically being applied for 10-20 minutes, prior to or during performance of a particular motor or cognitive task. Here we show that when short duration stimulation epochs (< 3 seconds) are yoked to movement, only the reaching movements repeatedly performed simultaneously with stimulation are selectively enhanced. We propose that mechanisms of Hebbian-like learning are potentiated within neural circuits that are active during movement and concurrently stimulated, thus driving improved adaptation.


2019 ◽  
Author(s):  
Gauthier Denis ◽  
Raphael Zory ◽  
Rémi Radel

AbstractThe aim of this study was to clarify the role of the prefrontal cortex (PFC) in physical effort regulation. We hypothesized that the PFC would be progressively involved in physical endurance through the engagement of cognitive inhibition, which would be necessary to maintain effort by inhibiting fatigue-related cues. This hypothesis was examined using a double-blind, sham-controlled, within-subjects study (N = 20) using high-definition (HD) transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC). Participants had to maintain a knee extensor contraction at 30% of their maximal force while simultaneously performing an Eriksen flanker task to evaluate their inhibition performance during the task. Anodal stimulation of the dlPFC influenced response to the cognitive task during exercise, as seen by slower response times and better accuracy. However, it did not lead to any measureable improvement in cognitive inhibition and did not influence endurance time. There was no correlation between cognitive inhibition and the maintenance of physical effort. This result could be explained by some methodological limitations of our protocol, and we also provide alternative explanations for the contribution of the PFC in physical endurance.


Author(s):  
Noëmie Pineau ◽  
Alison Robin ◽  
Samuel Bulteau ◽  
Véronique Thomas-Ollivier ◽  
Anne Sauvaget ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1726
Author(s):  
Ariane Wiegand ◽  
Arne Blickle ◽  
Christof Brückmann ◽  
Simone Weller ◽  
Vanessa Nieratschker ◽  
...  

Changes in epigenetic modifications present a mechanism how environmental factors, such as the experience of stress, can alter gene regulation. While stress-related disorders have consistently been associated with differential DNA methylation, little is known about the time scale in which these alterations emerge. We investigated dynamic DNA methylation changes in whole blood of 42 healthy male individuals in response to a stressful cognitive task, its association with concentration changes in cortisol, and its modulation by transcranial direct current stimulation (tDCS). We observed a continuous increase in COMT promotor DNA methylation which correlated with higher saliva cortisol levels and was still detectable one week later. However, this lasting effect was suppressed by concurrent activity-enhancing anodal tDCS to the dorsolateral prefrontal cortex. Our findings support the significance of gene-specific DNA methylation in whole blood as potential biomarkers for stress-related effects. Moreover, they suggest alternative molecular mechanisms possibly involved in lasting behavioral effects of tDCS.


Sign in / Sign up

Export Citation Format

Share Document