scholarly journals Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties

Author(s):  
Jumpei Fukumasu ◽  
Nick Jarvis ◽  
John Koestel ◽  
Thomas Kätterer ◽  
Mats Larsbo
2006 ◽  
Vol 86 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Jeanette Gaultier ◽  
Annemieke Farenhorst ◽  
Gary Crow

Since pesticide fate and leaching models increasingly incorporate spatial variability, the objective of this study was to quantify the variability of soil properties and 2,4-D sorption within a hummocky field as affected by landscape position and soil depth. Seventy-two soil cores collected at 5-m intervals along a transect were segmented by soil horizon (A, B and C) and landscape position (upper, mid, lower and depression). As expected, soil organic carbon content significantly decreased, and soil pH and soil carbonate content significantly increased with soil depth, while clay content was significantly greater in the B horizon than the A and C horizon. Soils from the depressional area generally had higher soil organic carbon content, soil carbonate content, clay content and soil pH than soil samples from other slope positions. The sorption of 2,4-D by soil was positively correlated with soil organic matter content and negatively correlated with soil carbonate content. These soil properties and herbicide sorption varied along the transect and with soil depth. Regardless of whether or not the landscape was segmented by landscape position, for both the A and C horizon, predictions of 2,4-D sorption by soil were generally good using simple regression models that contained soil organic carbon content and carbonate content as the only parameters. However, for the B horizon, the prediction of 2,4-D sorption by soil was very poor when all sampling points along the transect were considered, but greatly improved for the mid- and depressional slope positions when soils were segmented by landscape position. We conclude that segmentation by slope position could be a useful additional tool when predicting pesticide fate and leaching at the large-scale. As well, the negative association between soil carbonate content and 2,4-D sorption warrants further attention as a large portion of Canadian agriculture encompasses calcareous soils. Key words: 2,4-D, sorption, soil organic carbon, carbonates, landscape position, soil depth


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245040
Author(s):  
Feng Zhang ◽  
Shihang Wang ◽  
Mingsong Zhao ◽  
Falv Qin ◽  
Xiaoyu Liu

Soil organic carbon content has a significant impact on soil fertility and grain yield, making it an important factor affecting agricultural production and food security. Dry farmland, the main type of cropland in China, has a lower soil organic carbon content than that of paddy soil, and it may have a significant carbon sequestration potential. Therefore, in this study we applied the CENTURY model to explore the temporal and spatial changes of soil organic carbon (SOC) in Jilin Province from 1985 to 2015. Dry farmland soil polygons were extracted from soil and land use layers (at the 1:1,000,000 scale). Spatial overlay analysis was also used to extract 1282 soil polygons from dry farmland. Modelled results for SOC dynamics in the dry farmland, in conjunction with those from the Yushu field-validation site, indicated a good level of performance. From 1985 to 2015, soil organic carbon density (SOCD) of dry farmland decreased from 34.36 Mg C ha−1 to 33.50 Mg C ha−1 in general, having a rate of deterioration of 0.03 Mg C ha−1 per year. Also, SOC loss was 4.89 Tg from dry farmland soils in the province, with a deterioration rate of 0.16 Tg C per year. 35.96% of the dry farmland its SOCD increased but 64.04% of the area released carbon. Moreover, SOC dynamics recorded significant differences between different soil groups. The method of coupling the CENTURY model with a detailed soil database can simulate temporal and spatial variations of SOC at a regional scale, and it can be used as a precise simulation method for dry farmland SOC dynamics.


Sign in / Sign up

Export Citation Format

Share Document