scholarly journals Phenotypic plasticity is aligned with phenological adaptation on both micro‐ and macroevolutionary timescales

2022 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Maarit I. Mäenpää ◽  
Erik I. Svensson
2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


Author(s):  
Karen D. Williams ◽  
Marla B. Sokolowski

Why is there so much variation in insect behavior? This chapter will address the sources of behavioral variability, with a particular focus on phenotypic plasticity. Variation in social, nutritional, and seasonal environmental contexts during development and adulthood can give rise to phenotypic plasticity. To delve into mechanism underlying behavioral flexibility in insects, examples of polyphenisms, a type of phenotypic plasticity, will be discussed. Selected examples reveal that environmental change can affect gene expression, which in turn can affect behavioral plasticity. These changes in gene expression together with gene-by-environment interactions are discussed to illuminate our understanding of insect behavioral plasticity.


Author(s):  
H. Frederik Nijhout ◽  
Emily Laub

Many behaviors of insects are stimulated, modified, or modulated by hormones. The principal hormones involved are the same as the ones that control moulting, metamorphosis, and other aspects of development, principally ecdysone and juvenile hormone. In addition, a small handful of neurosecretory hormones are involved in the control of specific behaviors. Because behavior is a plastic trait, this chapter begins by outlining the biology and hormonal control of phenotypic plasticity in insects, and how the hormonal control of behavior fits in with other aspects of the control of phenotypic plasticity. The rest of the chapter is organized around the diversity of behaviors that are known to be controlled by or affected by hormones. These include eclosion and moulting behavior, the synthesis and release of pheromones, migration, parental care, dominance, reproductive behavior, and social behavior.


Sign in / Sign up

Export Citation Format

Share Document