scholarly journals Short‐term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans

Evolution ◽  
2020 ◽  
Vol 74 (11) ◽  
pp. 2451-2464
Author(s):  
Lindsay M. Johnson ◽  
Olivia J. Smith ◽  
Daniel A. Hahn ◽  
Charles F. Baer
2020 ◽  
Author(s):  
Charles F. Baer ◽  
Dan Hahn ◽  
Lindsay M Johnson ◽  
Olivia J Smith

ABSTRACTMetabolic disorders have a large heritable component, and have increased over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.


2020 ◽  
Author(s):  
Markus Pfenninger ◽  
Halina Binde Doria ◽  
Jana Nickel ◽  
Anne Thielsch ◽  
Klaus Schwenk ◽  
...  

AbstractMutations are the ultimate source of heritable variation and therefore the fuel for evolution, but direct estimates exist only for few species. We estimated the spontaneous nucleotide mutation rate among clonal generations in the waterflea Daphnia galeata with a short term mutation accumulation approach. Individuals from eighteen mutation accumulation lines over five generations were deep genome sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing the parental genotype. We identified 12 new nucleotide mutations in 90 clonal generational passages. This resulted in an estimated haploid mutation rate of 0.745 x 10-9 (95% c.f. 0.39 x 10-9 − 1.26 x 10-9), which is slightly lower than recent estimates for other Daphnia species. We discuss the implications for the population genetics of Cladocerans.


2006 ◽  
Vol 127 (5) ◽  
pp. 458-472 ◽  
Author(s):  
Joshua J. McElwee ◽  
Eugene Schuster ◽  
Eric Blanc ◽  
Janet Thornton ◽  
David Gems

2016 ◽  
Vol 8 ◽  
pp. 41-47 ◽  
Author(s):  
Takuya Urushihata ◽  
Tokumitsu Wakabayashi ◽  
Shoichi Osato ◽  
Tetsuro Yamashita ◽  
Tetsuya Matsuura

2018 ◽  
Author(s):  
Clotilde Gimond ◽  
Anne Vielle ◽  
Nuno Silva-Soares ◽  
Stefan Zdraljevic ◽  
Patrick T. McGrath ◽  
...  

ABSTRACTSperm morphology is critical for sperm competition and thus for reproductive fitness. In the male-hermaphrodite nematode Caenorhabditis elegans, sperm size is a key feature of sperm competitive ability. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying its natural variation remain unknown. Examining 97 genetically distinct C. elegans strains, we observe significant heritable variation in male sperm size but genome-wide association mapping did not yield any QTL (Quantitative Trait Loci). While we confirm larger male sperm to consistently outcompete smaller hermaphrodite sperm, we find natural variation in male sperm size to poorly predict male fertility and competitive ability. In addition, although hermaphrodite sperm size also shows significant natural variation, male and hermaphrodite sperm size do not correlate, implying a sex-specific genetic regulation of sperm size. To elucidate the molecular basis of intraspecific sperm size variation, we focused on recently diverged laboratory strains, which evolved extreme sperm size differences. Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 – previously shown to underlie the evolution of improved hermaphrodite reproduction – also explains the evolution of reduced male sperm size. This result illustrates how adaptive changes in C. elegans hermaphrodite function can cause the deterioration of a male-specific fitness trait due to a sexually antagonistic variant, representing an example of intralocus sexual conflict with resolution at the molecular level. Our results further provide first insights into the genetic determinants of C. elegans sperm size, pointing at an involvement of the NURF chromatin remodelling complex.


2014 ◽  
Author(s):  
Michael DeNieu ◽  
William Pitchers ◽  
Ian Dworkin

Evolutionary theory is sufficiently well developed to allow for short-term prediction of evolutionary trajectories. In addition to the presence of heritable variation, prediction requires knowledge of the form of natural selection on relevant traits. While many studies estimate the form of natural selection, few examine the degree to which traits evolve in the predicted direction. In this study we examine the form of natural selection imposed by mantid predation on wing size and shape in the fruitfly,Drosophila melanogaster. We then evolve populations ofD. melanogasterunder predation pressure, and examine the extent to which wing size and shape have responded in the predicted direction. We demonstrate that wing form partially evolves along the predicted vector from selection, more so than for control lineages. Furthermore, we re-examined phenotypic selection after ~30 generations of experimental evolution. We observed that the magnitude of selection on wing size and shape was diminished in populations evolving with mantid predators, while the direction of the selection vector differed from that of the ancestral population for shape. We discuss these findings in the context of the predictability of evolutionary responses, and the need for fully multivariate approaches.


2015 ◽  
Vol 112 (14) ◽  
pp. 4399-4404 ◽  
Author(s):  
Alison R. Gerken ◽  
Olivia C. Eller ◽  
Daniel A. Hahn ◽  
Theodore J. Morgan

Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the face of climate change. However, the evolutionary independence of basal and plastic tolerances remains unclear. Acclimation can occur over longer (seasonal) or shorter (hours to days) time scales, and the degree of mechanistic overlap is unresolved. Using a midlatitude population ofDrosophila melanogaster, we show substantial heritable variation in both short- and long-term acclimation. Rapid cold hardening (short-term plasticity) and developmental acclimation (long-term plasticity) are positively correlated, suggesting shared mechanisms. However, there are independent components of these traits, because developmentally acclimated flies respond positively to short-term acclimation. A strong negative correlation between basal cold tolerance and developmental acclimation suggests that basal cold tolerance may constrain developmental acclimation, whereas a weaker negative correlation between basal cold tolerance and short-term acclimation suggests less constraint. Using genome-wide association mapping, we show the genetic architecture of rapid cold hardening and developmental acclimation responses are nonoverlapping at the SNP and corresponding gene level. However, genes associated with each trait share functional similarities, including genes involved in apoptosis and autophagy, cytoskeletal and membrane structural components, and ion binding and transport. These results indicate substantial opportunity for short-term and long-term acclimation responses to evolve separately from each other and for short-term acclimation to evolve separately from basal thermotolerance.


2016 ◽  
Vol 10 ◽  
pp. 38-46 ◽  
Author(s):  
Jenifer N. Saldanha ◽  
Santosh Pandey ◽  
Jo Anne Powell-Coffman

2010 ◽  
Vol 8 (1) ◽  
pp. 49 ◽  
Author(s):  
Hualing Li ◽  
Changhong Ren ◽  
Jinping Shi ◽  
Xingyi Hang ◽  
Feilong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document