Vortioxetine as an analgesic in preclinical inflammatory pain models: mechanism of action

Author(s):  
Marija Todorović ◽  
Ana Micov ◽  
Katarina Nastić ◽  
Maja Tomić ◽  
Uroš Pecikoza ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Tianle Gao ◽  
Tao Li ◽  
Wei Jiang ◽  
Weiming Fan ◽  
Xiao-Jun Xu ◽  
...  

The management of postoperative and inflammatory pain has been a pressing challenge in clinical settings. Sinomenine (SN) is a morphinan derived alkaloid with remarkable analgesic properties in various kinds of pain models. The aim of the current study is to investigate if SN can enhance the effect of ligustrazine hydrochloride (LGZ) or paracetamol (PCM) in animal models of postoperative and inflammatory pain. And to determine if the combined therapeutic efficacies can be explained by pharmacokinetics changes. Pharmacological studies were performed using a rat model of incisional pain, and a mouse model of carrageenan induced inflammatory pain. Pharmacokinetic studies were performed using a microdialysis sampling and HPLC-MS/MS assay method to quantify SN, LGZ, and PCM levels in blood and extracellular fluid in brain. We found that SN plus LGZ or SN plus PCM produced marked synergistic analgesic effects. However, such synergy was subjected to pain modalities, and differed among pain models. Pharmacological discoveries could be partially linked to pharmacokinetic alterations in SN combinations. Though further evaluation is needed, our findings advocate the potential benefits of SN plus LGZ for postoperative pain management, and SN plus PCM for controlling inflammatory pain.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ruqayya Afridi ◽  
Ashraf Ullah Khan ◽  
Sidra Khalid ◽  
Bushra Shal ◽  
Hina Rasheed ◽  
...  

Abstract Background Poncirin is flavanone derivative (isolated from Poncirus trifoliata) with known pharmacological activities such as anti-tumor, anti-osteoporotic, anti-inflammatory and anti-colitic. The present study aimed to explore the anti-allodynic and anti-hyperalgesic potentials of poncirin in murine models of inflammatory pain. Methods The analgesic potential of poncirin was evaluated in formalin-, acetic acid-, carrageenan- and Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models in mice. Anti-allodynic and anti-hyperalgesic activities were measured using Von Frey filaments, Randall Selitto, hotplate and cold acetone tests. The serum nitrite levels were determined using Griess reagent. The Quantitative Real-time PCR (qRT-PCR) was performed to assess the effect of poncirin on mRNA expression levels of inflammatory cytokines and anti-oxidant enzymes. Results Intraperitoneal administration of poncirin (30 mg/kg) markedly reduced the pain behavior in both acetic acid-induced visceral pain and formalin-induced tonic pain models used as preliminary screening tools. The poncirin (30 mg/kg) treatment considerably inhibited the mechanical hyperalgesia and allodynia as well as thermal hyperalgesia and cold allodynia. The qRT-PCR analysis showed noticeable inhibition of pro-inflammatory cytokines (mRNA expression levels of TNF-α, IL-1β and IL-6) (p < 0.05) in poncirin treated group. Similarly, poncirin treatment also enhanced the mRNA expressions levels of anti-oxidant enzymes such as transcription factor such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (p < 0.05), heme oxygenase (HO-1) (p < 0.05) and superoxide dismutase (SOD2) (p < 0.05). Chronic treatment of poncirin for 6 days did not confer any significant hepatic and renal toxicity. Furthermore, poncirin treatment did not altered the motor coordination and muscle strength in CFA-induced chronic inflammatory pain model. Conclusion The present study demonstrated that poncirin treatment significantly reduced pain behaviors in all experimental models of inflammatory pain, suggesting the promising analgesic potential of poncirin in inflammatory pain conditions.


2018 ◽  
Vol 9 ◽  
Author(s):  
Sidra Khalid ◽  
Muhammad Z. Ullah ◽  
Ashraf U. Khan ◽  
Ruqayya Afridi ◽  
Hina Rasheed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document