Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States

2016 ◽  
Vol 23 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Matthew I. Pyne ◽  
N. LeRoy Poff

2019 ◽  
Vol 72 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Victoria E. Pennington ◽  
John B. Bradford ◽  
Kyle A. Palmquist ◽  
Rachel R. Renne ◽  
William K. Lauenroth


2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Lunt ◽  
Christopher J. Freeman ◽  
Dean S. Janiak ◽  
Katrina Bayliss ◽  
Michelle Stephens ◽  
...  

Understanding the structure and function of infaunal communities is useful in determining the biodiversity and ecosystem function of shallow estuaries. We conducted a survey of infaunal communities within three separate water basins [Mosquito Lagoon (ML), Indian River (IR), and Banana River (BR)] in the larger Northern Indian River Lagoon, FL, United States to establish a database of infaunal community structure and function. Twenty-seven sites were sampled quarterly from 2014 to 2016. Analysis of all samples determined that basin, season, and sediment composition were the primary drivers of macrobenthic community composition. Diversity was highest in the ML, and lower in spring compared to other seasons. The occurrence of a brown tide (Aureoumbra lagunensis) in 2016 allowed a comparison of winter and spring communities before (2015) and during (2016) a bloom event. Community composition and diversity at the BR sites were the most affected by the bloom event with the lowest diversity and abundances during the bloom. Diversity in the IR was also lower during the bloom, while the ML was unaffected by the bloom. Species of all feeding groups were affected by the bloom, with lower abundances found in all groups. In addition, to determine the overall trophic diversity of infaunal communities, we collected infaunal organisms from two of the quarterly sampled sites for isotope analyses. Values of δ13C and δ15N from infaunal tissue were compared to those of potential food sources at each site. Substantial interspecific variation in isotope values of infaunal organisms within a site suggests the presence of diverse nutritional modes that include suspension and deposit feeding and predation. Together, these data suggest that infaunal communities contribute to benthic pelagic coupling and nutrient cycling within the estuarine communities, but the overall function of these communities may be tightly linked to their species composition.



Author(s):  
Jennifer J. Smith

Coherence of place often exists alongside irregularities in time in cycles, and chapter three turns to cycles linked by temporal markers. Ray Bradbury’s The Martian Chronicles (1950) follows a linear chronology and describes the exploration, conquest, and repopulation of Mars by humans. Conversely, Louise Erdrich’s Love Medicine (1984) jumps back and forth across time to narrate the lives of interconnected families in the western United States. Bradbury’s cycle invokes a confluence of historical forces—time as value-laden, work as a calling, and travel as necessitating standardized time—and contextualizes them in relation to anxieties about the space race. Erdrich’s cycle invokes broader, oppositional conceptions of time—as recursive and arbitrary and as causal and meaningful—to depict time as implicated in an entire system of measurement that made possible the destruction and exploitation of the Chippewa people. Both volumes understand the United States to be preoccupied with imperialist impulses. Even as they critique such projects, they also point to the tenacity with which individuals encounter these systems, and they do so by creating “interstitial temporalities,” which allow them to navigate time at the crossroads of language and culture.



2010 ◽  
Vol 12 (2) ◽  
pp. 201-204
Author(s):  
Gaston Guzman ◽  
Joel Greene ◽  
Florencia Ramirez-Guillen


2018 ◽  
Author(s):  
Faith Ann Heinsch ◽  
Pamela G. Sikkink ◽  
Helen Y. Smith ◽  
Molly L. Retzlaff


NWSA Journal ◽  
2004 ◽  
Vol 16 (2) ◽  
pp. 180-189
Author(s):  
Karen L. Salley ◽  
Barbara Scott Winkler ◽  
Megan Celeen ◽  
Heidi Meck


Sign in / Sign up

Export Citation Format

Share Document