Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta‐analysis

2020 ◽  
Vol 26 (12) ◽  
pp. 7229-7241
Author(s):  
Yunfeng Han ◽  
Jiguang Feng ◽  
Mengguang Han ◽  
Biao Zhu
Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Ecology ◽  
2017 ◽  
Vol 98 (8) ◽  
pp. 2111-2119 ◽  
Author(s):  
Camille S. Delavaux ◽  
Lauren M. Smith-Ramesh ◽  
Sara E. Kuebbing

2020 ◽  
Vol 11 ◽  
Author(s):  
Khondoker M. G. Dastogeer ◽  
Mst Ishrat Zahan ◽  
Md. Tahjib-Ul-Arif ◽  
Mst Arjina Akter ◽  
Shin Okazaki

Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yawen Lu ◽  
Xiang Liu ◽  
Shurong Zhou

Global nitrogen eutrophication, which is disrupting the intimate plant–arbuscular mycorrhizal fungi (AMF) symbiosis, can alter the diversity and physiological functions of soil AMF greatly. However, shifts of beta diversity and the intrinsic patterns of AMF community dissimilarities in response to nitrogen addition remain unclear. Based on a 7-year nitrogen addition experiment in a Qinghai–Tibet Plateau alpine meadow, we detected the changes in soil AMF alpha diversity (richness and genus abundance) and the community composition beta diversity by partitioning the two components of Simpson and nestedness dissimilarities along (turnover) and within (variation) nitrogen addition treatments, and fitted with environmental factor dissimilarities. We found that nitrogen addition decreased AMF richness by decreasing the most dominant AMF genus of Glomus but increasing the abundance of the rare genera. The turnover of the AMF community overall beta diversity along the nitrogen addition gradients was induced by the increased nestedness dissimilarity, while the variation within treatments was explained by both increased Simpson and nestedness dissimilarities, which was significantly correlated with soil pH. Our study found both Simpson and nestedness dissimilarities worked on the AMF community dissimilarity after nitrogen addition and the significant variation within the same treatment, which would be important in the future for predicting global AMF or microbial diversity changes in response to nitrogen eutrophication.


2013 ◽  
Vol 374 (1-2) ◽  
pp. 523-537 ◽  
Author(s):  
Eva F. Leifheit ◽  
Stavros D. Veresoglou ◽  
Anika Lehmann ◽  
E. Kathryn Morris ◽  
Matthias C. Rillig

Sign in / Sign up

Export Citation Format

Share Document