Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010

Mycorrhiza ◽  
2011 ◽  
Vol 22 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Stavros D. Veresoglou ◽  
George Menexes ◽  
Matthias C. Rillig
Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2019 ◽  
Vol 32 (3) ◽  
pp. 607-615
Author(s):  
LARISSA DE SOUZA GOIS ◽  
JOHNY DE JESUS MENDONÇA ◽  
JUAN LOPES TEIXEIRA ◽  
CAROLINA MANGIERI DE OLIVEIRA PRADO ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
...  

ABSTRACT Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSE) promote increase in plant biomass, depending on the soil and climate conditions and the interactions with the host plant. The objective of this study was to evaluate the interaction of exotic arbuscular mycorrhizal fungi and native DSE fungi on the initial growth of P. millegrana. A completely randomized experimental design comprising the Paspallum millegrana cutilvar with the following treatments: control - without AMF, and three exotic AMF isolates (UFLA351 - Rhizoglomus clarum, UFLA372 - Claroideoglomus etunicatum and UFLA401 - Acaulospora morrowiae), with four replications each. P. millegrana grass was colonized by exotic AMF by R. clarum (UFLA351, 11.9%), C. etunicatum (UFLA372, 39.6%), and A. morrowiae (UFLA401, 51.2%). P. millegrana was also colonized by native DSE fungi, but these did not interfere with the colonization by exotic AMF and plant development. P. millegrana is responsive to the inoculation of UFLAs isolates of exotic AMF, which may contribute to the grass growth and survival under field conditions. The process of surface disinfestation of seeds does not eliminate endophytic microorganisms, whose presence may influence plant colonization by AMF, as well as development of the host plant.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


2021 ◽  
Vol 134 ◽  
pp. 187-196
Author(s):  
M.J. Salomon ◽  
S.J. Watts-Williams ◽  
M.J. McLaughlin ◽  
C.J. Brien ◽  
N. Jewell ◽  
...  

Ecology ◽  
2017 ◽  
Vol 98 (8) ◽  
pp. 2111-2119 ◽  
Author(s):  
Camille S. Delavaux ◽  
Lauren M. Smith-Ramesh ◽  
Sara E. Kuebbing

2018 ◽  
Vol 156 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Caixia Liu ◽  
Sabine Ravnskov ◽  
Fulai Liu ◽  
Gitte H. Rubæk ◽  
Mathias N. Andersen

AbstractDeficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI.A greenhouse experiment was conducted with potato grown with (P1) or without (P0) P fertilization, with AMF (M1+:Rhizophagus irregularisor M2+:Glomus proliferum) or AMF-free control (M−) and subjected to full irrigation (FI), DI or partial root-zone drying (PRD).Inoculation of M1+ and M2+ maintained or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused by stimulation of plant P/N uptake and carbon partitioning toward roots and tubers. However, plant growth response to AMF was not related to the percentage of AMF root colonization. Arbuscular mycorrhizal fungi can maintain and improve P/N uptake, WUE and growth of plants both at high/low P levels and under FI/DI. If this is also the case under field conditions, it should be implemented for sustainable potato production.


Sign in / Sign up

Export Citation Format

Share Document