Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change

2016 ◽  
Vol 17 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Harald Bugmann ◽  
Thomas Cordonnier ◽  
Heimo Truhetz ◽  
Manfred J. Lexer
2013 ◽  
Vol 23 (6) ◽  
pp. 646-657 ◽  
Author(s):  
Rosa Menéndez ◽  
Adela González-Megías ◽  
Pierre Jay-Robert ◽  
Rocío Marquéz-Ferrando

2016 ◽  
Vol 54 (2) ◽  
pp. 389-401 ◽  
Author(s):  
Marco Mina ◽  
Harald Bugmann ◽  
Thomas Cordonnier ◽  
Florian Irauschek ◽  
Matija Klopcic ◽  
...  

2018 ◽  
Vol 40 (5) ◽  
pp. 501 ◽  
Author(s):  
Felix Herzog ◽  
Irmi Seidl

High altitude grazing is widespread around the globe and also has a long tradition in European mountain regions. One-third of the Swiss farmland consists of summer pastures: seasonally used marginal pastures without permanent settlements, which extend between the grasslands and forests of permanent mountain settlements and unproductive mountain tops. Farmers’ main motivations for using those pastures have been and still are forage provision and health benefits for grazing animals, benefits for labour distribution between home farm and summer farm, and cultural ecosystem services such as the maintenance of a tradition and the associated lifestyle. Yet, remote pastures are being abandoned and are prone to reforestation, while more productive and accessible pastures are intensified. Those processes are related to changes in management practices, to scarcity of labour and – to a lesser extent – to climate change. We summarise the agronomic and ecological status of Swiss summer pastures, in particular with respect to livestock keeping, biodiversity and climate change, and speculate on future trends of summer farming.


2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


2019 ◽  
Vol 11 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
A. Mentzafou ◽  
A. Conides ◽  
E. Dimitriou

Abstract Coastal ecosystems are linked to socio-economic development, but simultaneously, are particularly vulnerable to anthropogenic climate change and sea level rise (SLR). Within this scope, detailed topographic data resources of Spercheios River and Maliakos Gulf coastal area in Greece, combined with information concerning the economic value of the most important sectors of the area (wetland services, land property, infrastructure, income) were employed, so as to examine the impacts of three SLR scenarios, compiled based on the most recent regional projections reviewed. Based on the results, in the case of 0.3 m, 0.6 m and 1.0 m SLR, the terrestrial zone to be lost was estimated to be 6.2 km2, 18.9 km2 and 31.1 km2, respectively. For each scenario examined, wetlands comprise 68%, 41% and 39% of the total area lost, respectively, reflecting their sensitivity to even small SLR. The total economic impact of SLR was estimated to be 75.4 × 106 €, 161.7 × 106 € and 510.7 × 106 € for each scenario, respectively (3.5%, 7.5% and 23.7% of the gross domestic product of the area), 19%, 17% and 8% of which can be attributed to wetland loss. The consequences of SLR to the ecosystem services provided are indisputable, while adaptation and mitigation planning is required.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 427
Author(s):  
Tianyang Zhou ◽  
Jiaxin Zhang ◽  
Yunzhi Qin ◽  
Mingxi Jiang ◽  
Xiujuan Qiao

From supporting wood production to mitigating climate change, forest ecosystem services are crucial to the well-being of humans. Understanding the mechanisms that drive forest dynamics can help us infer how to maintain forest ecosystem services and how to improve predictions of forest dynamics under climate change. Despite the growing number of studies exploring above ground biomass (AGB) dynamics, questions of dynamics in biodiversity and in number of individuals still remain unclear. Here, we first explored the patterns of community dynamics in different aspects (i.e., AGB, density and biodiversity) based on short-term (five years) data from a 25-ha permanent plot in a subtropical forest in central China. Second, we examined the relationships between community dynamics and biodiversity and functional traits. Third, we identified the key factors affecting different aspects of community dynamics and quantified their relative contributions. We found that in the short term (five years), net above ground biomass change (ΔAGB) and biodiversity increased, while the number of individuals decreased. Resource-conservation traits enhanced the ΔAGB and reduced the loss in individuals, while the resource-acquisition traits had the opposite effect. Furthermore, the community structure contributed the most to ΔAGB; topographic variables and soil nutrients contributed the most to the number of individuals; demographic process contributed the most to biodiversity. Our results indicate that biotic factors mostly affected the community dynamics of ΔAGB and biodiversity, while the number of individuals was mainly shaped by abiotic factors. Our work highlighted that the factors influencing different aspects of community dynamics vary. Therefore, forest management practices should be formulated according to a specific protective purpose.


2021 ◽  
Vol 13 (2) ◽  
pp. 1005
Author(s):  
Bernardo Duarte ◽  
Isabel Caçador

Research on biosaline agriculture has been increasing worldwide in recent years. In this respect, the Iberian halophyte diversity present a high-value ecological solution to be implemented for biosaline-based agroecosystems. The research on these halophytic species has been increasing worldwide and, in the recent years, especially in terms saline agriculture adaptation, osmophysiology and nutraceutical potential, highlighting the importance and potential of these species in terms of agrosolutions. The Mediterranean area has high biodiversity in terms of endemic halophytic vegetation (ca. 62 species), providing an alternative pool of potential new agricultural products to be cultivated in adverse conditions. Besides being highly diverse, most of these species are endemic and present a perennial life cycle with several applications in terms of food, forage, nutraceutical, feedstock and remediation. More specifically, the Iberian halophytic flora shows potential as resources of essential fatty acids, minerals and antioxidants—all very important for human and animal nutrition. Alongside the establishment of halophyte agroecological solutions is the provision of key ecosystem services, such as carbon sequestration and soil rehabilitation. Moreover, halophyte-based ecosystems provide additional recognized ecosystem services, beyond the final product production, by improving soil health, ecosystem biodiversity and storing large amounts of carbon, thereby increasing the ecosystem resilience to climate change and offering a green solution against climate change.


Sign in / Sign up

Export Citation Format

Share Document