A comparative evaluation of a new fully automated assay for von Willebrand factor collagen binding activity to an established method

Haemophilia ◽  
2017 ◽  
Vol 24 (1) ◽  
pp. 156-161 ◽  
Author(s):  
F. Stufano ◽  
L. Baronciani ◽  
D. Mane-Padros ◽  
G. Cozzi ◽  
S. Faraudo ◽  
...  
1997 ◽  
Vol 78 (02) ◽  
pp. 930-933 ◽  
Author(s):  
Ping Chang ◽  
D L Aronson

SummaryFive plasma preparations (11 lots) used in the treatment of von Willebrand’s disease (vWD) were evaluated. The collagen binding function of von Willebrand factor (vWF) containing preparations was compared with the ristocetin cofactor activity and the vWF antigen. Some preparations have higher ratio of functional activity (ristocetin cofactor and collagen binding) relative to the antigen than is found in normal plasma. The ristocetin cofactor activity and the collagen binding activity are tightly correlated (r = .95). Ultracentrifugal (UCF) analysis was used to compare the size distribution of vWf antigen, ristocetin cofactor and collagen binding activity. The sedimentation of all of the vWF parameters in the plasma products was slower than in plasma. In plasma products the ristocetin cofactor activity sediments the most rapidly, the collagen binding activity is slower and the antigen the slowest. The collagen/antigen ratio decreases with decreasing vWF size. Assignment of potency to vWF containing preparations utilizing the collagen binding activity may be more precise and as accurate as with the traditional ristocetin cofactor assay.


2018 ◽  
Vol 40 (5) ◽  
pp. 597-603 ◽  
Author(s):  
L. M. M. Oliveira ◽  
M. V. A. Amorim ◽  
C. A. Corsini ◽  
C. C. A. Neto ◽  
D. G. Chaves

1995 ◽  
Vol 84 (6) ◽  
pp. 697-700 ◽  
Author(s):  
KB Thomas ◽  
AH Sutor ◽  
N Altinkaya ◽  
A Grohmann ◽  
A Zehenter ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (16) ◽  
pp. 3489-3496 ◽  
Author(s):  
Anne F. Riddell ◽  
Keith Gomez ◽  
Carolyn M. Millar ◽  
Gillian Mellars ◽  
Saher Gill ◽  
...  

AbstractInvestigation of 3 families with bleeding symptoms demonstrated a defect in the collagen-binding activity of von Willebrand factor (VWF) in association with a normal VWF multimeric pattern. Genetic analysis showed affected persons to be heterozygous for mutations in the A3 domain of VWF: S1731T, W1745C, and S1783A. One person showed compound heterozygosity for W1745C and R760H. W1745C and S1783A have not been reported previously. The mutations were reproduced by site-directed mutagenesis and mutant VWF expressed in HEK293T cells. Collagen-binding activity measured by immunosorbent assay varied according to collagen type: W1745C and S1783A were associated with a pronounced binding defect to both type I and type III collagen, whereas the principal abnormality in S1731T patients was a reduction in binding to type I collagen only. The multimer pattern and distribution of mutant proteins were indistinguishable from wild-type recombinant VWF, confirming that the defect in collagen binding resulted from the loss of affinity at the binding site and not impairment of high-molecular-weight multimer formation. Our findings demonstrate that mutations causing an abnormality in the binding of VWF to collagen may contribute to clinically significant bleeding symptoms. We propose that isolated collagen-binding defects are classified as a distinct subtype of von Willebrand disease.


Sign in / Sign up

Export Citation Format

Share Document