scholarly journals Geochemical characteristics of mafic and felsic igneous rocks (1.9–1.75 Ga) in the Lesser Himalaya: Regional variation and its implications for tectonic setting

Island Arc ◽  
2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Ryuichi Shinjo ◽  
Tomoki Amuro ◽  
Kohei Oura ◽  
Kazuya Oshiro ◽  
Shiro Tahara ◽  
...  
Author(s):  
A.V. Grebennikov ◽  
◽  
A.I. Khanchuk ◽  

Transform margins represent lithospheric plate boundaries with horizontal sliding of oceanic plate, which in time and space replaced the subduction related convergent margins. This happened due to: spreading ridge–trench intersection (California; Queen Charlotte–Northern Cordilleran, West of the Antarctic Peninsula, and probably the Late Miocene–Pleistocene Southernmost South America) or ridge death along continental margin (Baja California); change in the direction of oceanic plate movement (Western Aleutian–Komandorsk; Southernmost tip of the Andes); and island arc-continent collision (New Guinea Island). Post-subduction magmatism is related to a slab window that resulted either from the spreading ridge collision (subduction) with a continental margin or slab tear formation, or slab break-off after subduction cessation due to other reasons. Igneous magmatic series formed in consequence of these events show diversity of tholeiitic (sub-alkaline), alkaline or calc-alkaline, high-alumina and adakitic rocks. The comprehensive geochemical dataset (more than 2400 analyses) on igneous rocks of the model transform and convergent geodynamic settings allowed to substantiate the most informative triple diagrams for the petrogenic oxides TiO2 × 10 – Fe2O3Tot – MgO and trace elements Nb – La– Yb. Mostly approved for the rock compositions with SiO2 < 63 wt. %, the new plots are capable of distinguishing igneous rocks formed above zones of subduction at an island arc and continental margin (related to convergent margins), from those formed in the tectonic setting of transform margins along continents or island arcs.


2021 ◽  
pp. SP513-2020-178
Author(s):  
Andrey F. Chitalin ◽  
Ivan A. Baksheev ◽  
Yurii N. Nikolaev ◽  
Georgy T. Djedjeya ◽  
Yuliya N. Khabibullina ◽  
...  

AbstractPorphyry Cu-Au±Mo mineralization at Peschanka is hosted by monzodiorite and monzonite intrusions with high-K calc-alkaline to shoshonitic compositions and dated at about 144.1±1.5 Ma, using U/Pb zircon ages. The Cretaceous intrusions are emplaced in a melange of Cretaceous island arcs, a tectonic setting comparable to other world-class porphyry Cu-Au deposits, such as Oyu Tolgoi, Mongolia, and Pebble, Alaska.Abundant primary magnetite contents of the Peschanka intrusions, as well as numerous gypsum and anhydrite veins, reflect the high oxidation states of their parental magmas. This mineralogical interpretation is confirmed by high whole-rock Fe2O3/FeO ratios and high V/Sc ratios of the rocks of up to 1.27 and up to 21.9, respectively. The whole-rock Eu/Eu& ratios of the Peschanka intrusions are ≥1 which is also typical for potassic igneous rocks with high oxidation states. Abundant amphibole and biotite phenocrysts of the intrusions as well as their high whole-rock Sr/Y ratios of up to 225 document significantly high H2O contents of the high-K magmas.Peschanka contains a resource of >9.5 Mt of copper at an average grade of 0.43 wt% and 16.5 Moz of gold at a high average grade of 0.23 g/t and, thus, representing one of the largest undeveloped greenfield copper projects worldwide. The vicinity of Peschanka still offers significant brownfields exploration potential.The hypogene vein-related and disseminated Cu-Au±Mo sulfide mineralization at Peschanka is structurally-controlled by significant NE-trending strike-slips that acted as the conduits for the hydrothermal fluids. The central part of the orebody consists of high-grade N-S trending sheeted quartz-bornite veining with unusually high vein densities. The highest Cu and Au grades are directly correlated with high vein densities.Peschanka is defined by distinct hydrothermal alteration zones including potassic, phyllic, propylitic and argillic assemblages, but a distinct lack of advanced argillic alteration. The mineralization itself is also zoned ranging from a central Mo-Cpy-Bn sulfide assemblage to a peripheral Py-Mt-dominated zone (“pyrite-shell”). Late-stage polymetallic assemblages overprint and surround the main stockwork zone.


2020 ◽  
Vol 57 (4) ◽  
pp. 506-523
Author(s):  
Jin-hua Qin ◽  
Cui Liu ◽  
Jin-fu Deng

We present systematic U–Pb age data collected by laser ablation multi-collector inductively coupled plasma mass spectrometry, precise geochemical data, and Nd isotope data for igneous rocks from the southeastern Lesser Xing’an Range (SE LXR). The results indicate that the formation ages as follows: Maojiatun alkaline granite, 207.2 ± 0.84 Ma and 204.6 ± 0.93 Ma; Diorite porphyrite, 164.5 ± 0.97 Ma; and Tieli syenogranite, 186.7 ± 1.50 Ma. The alkaline granite has high silicon, potassium, alkali, and FeOT contents; it is enriched in high field strength elements, Zr, Hf, Th, Rb, and U; is depleted in Ba, Sr, Nb, Ta, P, Ti, etc.; and has high ratios of 10000Ga/Al. It shows an A2-type granite affinity. The Tieli alkali-feldspar granite has high total alkali contents and is enriched in high field strength elements and rare earth elements and depleted in Sr, Ba, Ti, and P, and shows varying degrees of alkalinity. Rocks from SE LXR display similar εNd (t) values with corresponding to Nd model ages of 1095 to 813 Ma. The igneous rocks from the SE LXR are proposed to be derived from melting of the Neoproterozoic lower crust and potential magma mixing with ancient crystalline basement. The formation of the Maojiatun alkaline granite occurred in response to a postorogenic event following the closure of the Paleo-Asian Ocean. However, the SE LXR exhibited an extensional back-arc tectonic setting in the Early Jurassic. The Middle Jurassic diorite porphyrite could be related to the temporary stagnation of the westward subduction of the Paleo-Pacific plate.


Sign in / Sign up

Export Citation Format

Share Document