miR‐2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in Nilaparvata lugens

2019 ◽  
Vol 29 (1) ◽  
pp. 38-47 ◽  
Author(s):  
J. Chen ◽  
T. Li ◽  
R. Pang
2017 ◽  
Vol 73 (7) ◽  
pp. 1529-1537 ◽  
Author(s):  
Tengchao Li ◽  
Jie Chen ◽  
Xiaobin Fan ◽  
Weiwen Chen ◽  
Wenqing Zhang

mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Arsa Thammahong ◽  
Alayna K. Caffrey-Card ◽  
Sourabh Dhingra ◽  
Joshua J. Obar ◽  
Robert A. Cramer

ABSTRACT Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions. IMPORTANCE Human fungal infections are increasing globally due to HIV infections and increased use of immunosuppressive therapies for many diseases. Therefore, new antifungal drugs with reduced side effects and increased efficacy are needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic fungi and is absent in humans. Components of the trehalose biosynthesis pathway are important for the virulence of human-pathogenic fungi, including Aspergillus fumigatus. Consequently, it has been proposed that components of this pathway are potential targets for antifungal drug development. However, how trehalose biosynthesis influences the fungus-host interaction remains enigmatic. One phenotype associated with fungal trehalose biosynthesis mutants that remains enigmatic is cell wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall homeostasis through modulation of chitin synthase localization and activity. As the cell wall is a current and promising therapeutic target for fungal infections, understanding the role of trehalose biosynthesis in cell wall homeostasis and virulence is expected to help define new therapeutic opportunities. IMPORTANCE Human fungal infections are increasing globally due to HIV infections and increased use of immunosuppressive therapies for many diseases. Therefore, new antifungal drugs with reduced side effects and increased efficacy are needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic fungi and is absent in humans. Components of the trehalose biosynthesis pathway are important for the virulence of human-pathogenic fungi, including Aspergillus fumigatus. Consequently, it has been proposed that components of this pathway are potential targets for antifungal drug development. However, how trehalose biosynthesis influences the fungus-host interaction remains enigmatic. One phenotype associated with fungal trehalose biosynthesis mutants that remains enigmatic is cell wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall homeostasis through modulation of chitin synthase localization and activity. As the cell wall is a current and promising therapeutic target for fungal infections, understanding the role of trehalose biosynthesis in cell wall homeostasis and virulence is expected to help define new therapeutic opportunities.


2012 ◽  
Vol 40 (4) ◽  
pp. 502-508 ◽  
Author(s):  
M. P. Ali ◽  
Salem S. Alghamdi ◽  
M. A. Begum ◽  
A. B. M. Anwar Uddin ◽  
M. Z. Alam ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 266-LB
Author(s):  
BRIAN A. GRICE ◽  
JACOB D. COVERT ◽  
ALEC M. KREILACH ◽  
MATTHEW THORNBURG ◽  
LIXUAN TACKETT ◽  
...  

Author(s):  
Nguyễn Tiến Long ◽  
Trần Đăng Hòa ◽  
Trần Thị Lệ ◽  
Hoàng Hải Vân ◽  
Trương Thị Diệu Hạnh ◽  
...  

Rầy nâu Nilaparvata lugens Stal (Homoptera: Delphacidae) là sâu hại nguy hiểm ở tất cả các vùng trồng lúa của Việt Nam. Gieo trồng giống lúa kháng rầy là biện pháp phòng chống rầy nâu có hiệu quả nhất trong hệ thống quản lý dịch hại lúa tổng hợp (IPM). Một trong số những giống lúa được đánh giá có khả năng kháng rầy nâu tại Thừa Thiên Huế là giống HP28. Tuy nhiên, để đưa giống này vào sản xuất trên địa bàn cần phải xây dựng và hoàn thiện quy trình kỹ thuật. Trong nghiên cứu này chúng tôi đánh giá ảnh hưởng của mật độ gieo sạ đến sinh trưởng, phát triển, và năng suất của giống lúa kháng rầy nâu HP28 trong vụ Đông Xuân và Hè Thu tại Thừa Thiên-Huế. Thí nghiệm được bố trí theo kiểu khối ngẫu nhiên đầy đủ (RCBD) với 3 lần nhắc lại, diện tích mỗi ô thí nghiệm là 20m2. Kết quả đã xác định được đối với giống lúa HP28 ở Thừa Thiên Huế với mật độ gieo 60kg/ha thóc giống cho năng suất cao nhất và tăng khả năng kháng rầy nâu  ở cả hai vụ Đông Xuân và Hè Thu.Từ khóa: Giống kháng, Nilarpavata lugens, rầy nâu, mật độ gieo sạ


Sign in / Sign up

Export Citation Format

Share Document