scholarly journals Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro

Immunology ◽  
2019 ◽  
Vol 159 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Marlene C. Nielsen ◽  
Morten N. Andersen ◽  
Holger J. Møller
2020 ◽  
Vol 15 (2) ◽  
pp. 132-142
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Arnica montana, containing helenalin as its principal active constituent, is the most widely used plant to treat various ailments. Recent studies indicate that Arnica and helenalin provide significant health benefits, including anti-inflammatory, neuroprotective, antioxidant, cholesterol-lowering, immunomodulatory, and most important, anti-cancer properties. Objective: The objective of the present study is to overview the recent patents of Arnica and its principal constituent helenalin, including new methods of isolation, and their use in the prevention of cancer and other ailments. Methods: Current prose and patents emphasizing the anti-cancer potential of helenalin and Arnica, incorporated as anti-inflammary agents in anti-cancer preparations, have been identified and reviewed with particular emphasis on their scientific impact and novelty. Results: Helenalin has shown its anti-cancer potential to treat multiple types of tumors, both in vitro and in vivo. It has also portrayed synergistic effects when given in combination with other anti- cancer drugs or natural compounds. New purification/isolation techniques are also developing with novel helenalin formulations and its synthetic derivatives have been developed to increase its solubility and bioavailability. Conclusion: The promising anti-cancer potential of helenalin in various preclinical studies may open new avenues for therapeutic interventions in different tumors. Thus clinical trials validating its tumor suppressing and chemopreventive activities, particularly in conjunction with standard therapies, are immediately required.


Immunology ◽  
2005 ◽  
Vol 114 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Eyad Elkord ◽  
Paul E. Williams ◽  
Howard Kynaston ◽  
Anthony W. Rowbottom

2012 ◽  
Vol 302 (1) ◽  
pp. H69-H84 ◽  
Author(s):  
Stephan Nees ◽  
Dominik R. Weiss ◽  
Anton Senftl ◽  
Maria Knott ◽  
Stefan Förch ◽  
...  

Densely arranged pericytes engird the endothelial tube of all coronary microvessels. Since the experimental access to these abundant cells in situ is difficult, a prerequisite for broader investigation is the availability of sufficient numbers of fully differentiated pericytes in homogenous culture. To reach this goal, we applied strictly standardized cell isolation techniques, optimized culture methods and specific histological staining. Approximately 1,000-fold enriched pericytes were proteolytically detached from highly purified coronary microvascular networks (density gradient centrifugation) of eight mammalian species including human. Addition of species-autologous fetal or neonatal serum (10–20% vol/vol) was a precondition for longer term survival of homogenous pericyte cultures. This ensured optimal growth (doubling time <14 h) and full expression of pericyte-specific markers. In 3-mo, 1010 pericytes (15 g) could be cultivated from 1 bovine heart. Pericytes could be stored in liquid N2, recultured, and passaged repeatedly without loss of typical features. In cocultures with EC or vascular smooth muscle cells, pericytes transferred fluorescent calcein to each other and to EC via their antler-like extensions, organized angiogenetic sprouting of vessels, and rapidly activated coagulation factors X and II via tissue factor and prothrombinase. The interconnected pericytes of the coronary system are functionally closely correlated with the vascular endothelium and may play key roles in the adjustment of local blood flow, the regulation of angiogenic processes, and the induction of procoagulatory processes. Their successful bulk cultivation enables direct experimental access under defined in vitro conditions and the isolation of pericyte specific antigens for the production of specific antibodies.


1974 ◽  
Vol 20 (7) ◽  
pp. 963-966 ◽  
Author(s):  
Andrew J. O'Beirne ◽  
Warren C. Eveland

Rabbit alveolar macrophages can induce the L-phase of Listeria monocytogenes in vitro. Microscopic examination of Listeria-infected cultures revealed the presence of intracellular wall defective variants. Isolation techniques using saran membranes yielded L-phase variants which exhibited typical L-form colonies on osmotically protected medium. All attempts at reverting the isolated L-phase have been unsuccessful.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jurij Kiefer ◽  
Johannes Zeller ◽  
Balázs Bogner ◽  
Isabel A. Hörbrand ◽  
Friederike Lang ◽  
...  

Monocytes are the third most frequent type of leukocytes in humans, linking innate and adaptive immunity and are critical drivers in many inflammatory diseases. Based on the differential expression of surface antigens, three monocytic subpopulations have been suggested in humans and two in rats with varying inflammatory and phenotype characteristics. Potential intervention strategies that aim to manipulate these cells require an in-depth understanding of monocyte behavior under different conditions. However, monocytes are highly sensitive to their specific activation state and expression of surface markers, which can change during cell isolation and purification. Thus, there is an urgent need for an unbiased functional analysis of activation in monocyte subtypes, which is not affected by the isolation procedure. Here, we present a flow cytometry-based protocol for evaluating subset-specific activation and cytokine expression of circulating blood monocytes both in humans and rats using small whole blood samples (50 - 100 μL). In contrast to previously described monocyte isolation and flow cytometry visualization methods, the presented approach virtually leaves monocyte subsets in a resting state or fixes them in their current state and allows for an unbiased functional endpoint analysis without prior cell isolation. This protocol is a comprehensive tool for studying differential monocyte regulation in the inflammatory and allogeneic immune response in vitro and vivo.


1996 ◽  
Vol 80 (3) ◽  
pp. 940-948 ◽  
Author(s):  
E. R. Chin ◽  
H. J. Green

Because studies into exercise-induced alterations in sarcoplasmic reticulum (SR) Ca2+ sequestration have produced conflicting reports, we have hypothesized that the differences in SR Ca(2+)-adenosinetriphosphatase (ATPase) activity and Ca2+ uptake in SR fractions observed in different studies are due to different SR isolation techniques. To investigate this possibility, rat white and red gastrocnemius muscles from control and run animals were studied by using two conventional isolation techniques to obtain a crude microsomal fraction and an isolated SR vesicle (SRV) fraction. Indexes of CM and SRV function were compared with measurements from whole muscle homogenate. Treadmill running to exhaustion did not alter SR protein yields, percent SR extraction, or basal or Ca(2+)-ATPase purification in either fraction. Ca(2+)-activated ATPase activity was not altered by exercise in any of the fractions examined, but Ca2+ uptake was reduced in the homogenates (9.48 +/- 1.4 to 6.90 +/- 0.8 nmol . mg-1.min-1) and SRV fractions (84.0 +/- 11.5 to 50.7 +/- 14.0 nmol . mg-1.min-1) from the red gastrocnemius at free Ca2+ concentrations of 600-700 nM. These data indicate that reductions in SR Ca2+ uptake are dissociated from changes in Ca(2+)-ATPase in vitro and occur only in a specific population of vesicles. The mechanisms underlying these alterations are not known but may involve a reduction in the number of Ca(2+)-ATPase enzymes or a selective sedimentation of damaged vesicles in the SRV fraction.


2020 ◽  
Vol 21 (6) ◽  
pp. 2027 ◽  
Author(s):  
Sandra Torres ◽  
Zeinab Abdullah ◽  
Maximilian J Brol ◽  
Claus Hellerbrand ◽  
Mercedes Fernandez ◽  
...  

Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.


Sign in / Sign up

Export Citation Format

Share Document