A Simultaneous Loading System to Evaluate the Structural Reliability of Brittle Materials

1995 ◽  
Vol 78 (8) ◽  
pp. 2251-2253
Author(s):  
Akira Kishimoto ◽  
Kazuhito Sugai ◽  
Yoshinobu Nakamura ◽  
Naobumi Motohira ◽  
Hiroaki Yanagida
1984 ◽  
Author(s):  
S. M. Wiederhorn ◽  
N. J. Tighe ◽  
T. J. Chuang ◽  
K. A. Hardman-Rhyne ◽  
B. J. Hockey

1995 ◽  
Vol 103 (1202) ◽  
pp. 1082-1084 ◽  
Author(s):  
Kazuhito SUGAI ◽  
Akira KISHIMOTO ◽  
Yoshinobu NAKAMURA ◽  
Naobumi MOTOHIRA ◽  
Hiroaki YANAGIDA

Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-811-Pr9-816 ◽  
Author(s):  
O. A. Plekhov ◽  
D. N. Eremeev ◽  
O. B. Naimark

2019 ◽  
Vol 12 (1) ◽  
pp. 56-62 ◽  
Author(s):  
A. O. Nedosekin ◽  
A. V. Smirnov ◽  
D. P. Makarenko ◽  
Z. I. Abdoulaeva

The article presents new models and methods for estimating the residual service life of an autonomous energy system, using the functional operational risk criterion (FOR). The purpose of the article is to demonstrate a new method of durability evaluation using the fuzzy logic and soft computing framework. Durability in the article is understood as a complex property directly adjacent to the complex property of system resilience, as understood in the Western practice of assessing and ensuring the reliability of technical systems. Due to the lack of reliable homogeneous statistics on system equipment failures and recoveries, triangular fuzzy estimates of failure and recovery intensities are used as fuzzy functions of time based on incomplete data and expert estimates. The FOR in the model is the possibility for the system availability ratio to be below the standard level. An example of the evaluation of the FOR and the residual service life of a redundant cold supply system of a special facility is considered. The transition from the paradigm of structural reliability to the paradigm of functional reliability based on the continuous degradation of the technological parameters of an autonomous energy system is considered. In this case, the FOR can no longer be evaluated by the criterion of a sudden failure, nor is it possible to build a Markov’s chain on discrete states of the technical system. Assuming this, it is appropriate to predict the defi ning functional parameters of a technical system as fuzzy functions of a general form and to estimate the residual service life of the technical system as a fuzzy random variable. Then the FOR is estimated as the possibility for the residual life of the technical system to be below its warranty period, as determined by the supplier of the equipment.


Sign in / Sign up

Export Citation Format

Share Document