Thickness Alteration of Grain-Boundary Amorphous Films during Creep of a Multiphase Silicon Nitride Ceramic

2004 ◽  
Vol 84 (6) ◽  
pp. 1296-1300 ◽  
Author(s):  
Qiang Jin ◽  
David S. Wilkinson ◽  
George C. Weatherly ◽  
William E. Luecke ◽  
Sheldon M. Wiederhorn
2003 ◽  
Vol 18 (12) ◽  
pp. 2752-2755 ◽  
Author(s):  
Hirokazu Kawaoka ◽  
Tohru Sekino ◽  
Takafumi Kusunose ◽  
Koichi Niihara

Sodium ion-conductive silicon nitride ceramic with Na2O–Al2O3–SiO2 glass as the grain boundary phase was fabricated by adding Na2CO3, Al2O3, and SiO2 as sintering additives. The electrical conductivity was two and four orders of magnitude higher than that of Si3N4 ceramic with Y2O3 and Al2O3 additives at 100 and 1000°C, respectively. This result clearly indicates that ionic conductivity can be provided to insulating structural ceramics by modification of the grain boundary phase without dispersion of conductive particles.


Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1992 ◽  
Vol 287 ◽  
Author(s):  
T.S. Yen ◽  
W.Y. Sun

ABSTRACTAdditions and revisions to several of the most important phase diagrams and phase behavior diagrams in the silicon nitride field are reviewed in this work, with emphasis on the Y-Si-A1-O-N system. This information is further used to make observations on the promising silicon nitride systems containing either highly refractory grain boundary phases or compatible matrix phases of desirable properties. Examples are provided to illustrate the advantage of such a basic approach to materials design. Hardness, toughness, strength at room temperature and elevated temperature and even sinterability can all be improved by adopting such an approach.


Author(s):  
Hiro Yoshida ◽  
Takashi Nakashima ◽  
Makoto Yoshida ◽  
Yasushi Hara ◽  
Toru Shimamori

A new high quality turbine system using monolithic silicon-nitride ceramic is under development. In this study particle impact tests of the silicon-nitride have been tried at room and elevated temperatures with and without tensile load, which simulates centrifugal force of blade rotation. In the experiment 1 mm diameter particle is impacted at velocities up to 900 m s−1. In this paper, critical velocities for bending fracture and Hertzian cracks are examined. Moreover, strength degradation at elevated temperature and spall fracture of the blade are discussed. The main results are: 1) The bending fracture mode critical impact velocity for soft particles is higher than that for hard particles. 2)The impact parameter ϕ for initiation of Hertzian cracks ranges 1.08×10−5 – 1.56×10−5 for the materials tested. 3)Strength degradation at elevated temperature was clearly observed. 4) In the impact tests on blades spall fracture, which was caused by interaction of stress waves, appeared.


ChemInform ◽  
2010 ◽  
Vol 30 (13) ◽  
pp. no-no
Author(s):  
Hui Gu ◽  
Xiaoqing Pan ◽  
Rowland M. Cannon ◽  
Manfred Ruehle

1997 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
E. Heikinheimo ◽  
I. Isomäki ◽  
A.A. Kodentsov ◽  
F.J.J. van Loo

Sign in / Sign up

Export Citation Format

Share Document