Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
Latest Publications


TOTAL DOCUMENTS

49
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878637

Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.


Author(s):  
Hiro Yoshida ◽  
Takashi Nakashima ◽  
Makoto Yoshida ◽  
Yasushi Hara ◽  
Toru Shimamori

A new high quality turbine system using monolithic silicon-nitride ceramic is under development. In this study particle impact tests of the silicon-nitride have been tried at room and elevated temperatures with and without tensile load, which simulates centrifugal force of blade rotation. In the experiment 1 mm diameter particle is impacted at velocities up to 900 m s−1. In this paper, critical velocities for bending fracture and Hertzian cracks are examined. Moreover, strength degradation at elevated temperature and spall fracture of the blade are discussed. The main results are: 1) The bending fracture mode critical impact velocity for soft particles is higher than that for hard particles. 2)The impact parameter ϕ for initiation of Hertzian cracks ranges 1.08×10−5 – 1.56×10−5 for the materials tested. 3)Strength degradation at elevated temperature was clearly observed. 4) In the impact tests on blades spall fracture, which was caused by interaction of stress waves, appeared.


Author(s):  
Ulf R. Rådeklint ◽  
Christer S. Hjalmarsson

A high pressure hot test facility for cooled gas turbine components has been developed for use in turbine cooling research. In this facility, heat transfer tests for a sector of real turbine vanes can be performed under continuous operation. The heat transfer tests are performed at an operating point that is scaled down from the real engine operating point. The compressor can deliver air at the rate of up to 10 kg/s at 20 bars. Air temperatures of up to 1170 K can be achieved by using an oil-fired combustor. Besides conventional instrumentation such as thermocouples and pressure probes, the facility is equipped with an IR-camera to map two-dimensional wall temperature fields. Hot wire anemometry and an LDV system are used to determine mean and fluctuating velocity components. This paper describes design and performance of the test facility as well as the control and measurement equipment. The test and evaluation procedures used for testing of cooled gas turbine vanes are also presented.


Author(s):  
A. K. Rakhit ◽  
G. A. Cornejo ◽  
G. J. Lack

Epicyclic gearboxes of star configuration running at partial loads were found to induce non-synchronous (not related to speed) low-frequency vibrations, besides low level sub-synchronous (speed related) which were transmitted to other parts of a turbogenerator power train. At certain loads, the amplitudes of the non-synchronous vibrations were high enough to cause potential damage to sleeve bearings used in the power train system if a generator set would run for any considerable length of time at these loads. It was also observed that a very small increase in load above a certain limit (about 18% of full load) resulted in almost total elimination of these vibrations. Analysis of test data showed the non-synchronous vibrations were due to ‘backward whirl’ motion of gearbox output shaft in its sleeve bearings. Higher damping in the bearings was considered to be one of the most effective methods to suppress backward whirl of a shaft and hence, the non-synchronous vibrations. Accordingly, a new set of gearbox output shaft sleeve bearings was designed for higher damping that would allow these types of generator sets to run at partial and full loads without any detrimental vibration.


Author(s):  
A. Karl Owen ◽  
Anne Daugherty ◽  
Doug Garrard ◽  
Howard C. Reynolds ◽  
Richard D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration results and the results of the trade-off study.


Author(s):  
Howard Harris ◽  
Ivan Piñeiro ◽  
Tom Norris

A field test was conducted on a three splitter diffuser and a vaneless diffuser (no splitters) to determine, the pressure recovery coefficient, effects on engine performance, exhaust collector temperature distribution, and exhaust gas noise. This paper presents the cause of the mechanical failure of the three splitter diffuser, basic diffuser design, field test instrumentation, and the test results. The test results found the vaneless diffuser had a higher pressure recovery, created a lower back pressure, and did not raise the exhaust gas temperature (EGT) nor fuel consumption of the engine, as compared to the three splitter diffuser.


Author(s):  
A. K. Agrawal ◽  
A. Tinneti ◽  
S. R. Gollahalli

Power generating gas turbines employ an inlet duct or contraction to accelerate air to the operating inlet velocity of the compressor. Multiple passages of this kind are necessary in gas turbines with cycle modifications such as intercooling. An experimental investigation was carried out to obtain flow characteristics of a curved wall annular contraction. The results are described in terms of the velocity vectors, surface pressure coefficients, static and stagnation pressure distributions, and profiles of mean velocities, turbulence intensity, and Reynolds shear stress. The upstream flow conditions were changed to evaluate how they affected the flow development in the passage. Results show that the static pressure and axial velocity profiles at the contraction exit were uniform. Higher inlet turbulence increased the Reynolds shear stress although the effect on the static and total pressure fields was negligible. The overall stagnation pressure loss was approximately 2 to 3 percent of the dynamic head at the contraction exit.


Author(s):  
Yasushi Hara ◽  
Katsura Matsubara ◽  
Ken-ichi Mizuno ◽  
Toru Shimamori ◽  
Hiro Yoshida

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1350 °C in accordance with the project goals, we developed two silicon nitride materials with further improved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. On applying these silicon nitride ceramics to CGT engine, we evaluated various properties of silicon nitride materials considering the environment in CGT engine. Particle impact testing is one of those evaluations. Materials used in CGT engine are exposed in high speed gas flow, and impact damage of these materials is considered to be a concern. We tested ST-1 in the particle impact test. In this test, we observed fracture modes, and estimated the critical impact velocity. This paper summarizes the development of silicon nitride components, and the result of evaluations of these silicon nitride materials.


Author(s):  
Dennis E. Barbeau

This paper describes the status and potential for a fast time-to-market concurrent engineering process. The principles have been developed by the author over a 25 year learning process and used effectively on a variety of programs. Fast CE™ is fundamentally predicated on integration of the manufacturing and engineering processes at the conceptual design phase. Commencement at this early date is critical — 80 to 90% of the inherent production unit cost is locked in place during this process. Subsequent to development of an integrated design strategy, both producibility and functional product development evolve in parallel using a “model-centric” approach to maintain the integrity of all elements of the program. Fast CE™ not only eliminates the use of drawings, it requires that they not be used in any capacity except as a convenience reference. This provides tight control over a common data base that directly links all of the activities necessary to design and produce a product. The result is a significant reduction in cost and schedule, with gains in all of the processes required to bring a product to market. Drawing elimination in itself can amount to a savings of as much as one third of the total design cost. The activities previously supported by drawings — quality assurance, for example — are managed through simpler, more functionally oriented processes. The author describes the elements of Fast CE™ and the radical changes required in certain areas. Historical background traces development of the processes, providing perspective on the strategies and the issues faced and overcome, and leading to the issues currently faced in attainment of its full potential. The cost and schedule gains identified require cultural as well as operational changes. The more radical of these changes present a management challenge to any organization intent on gaining the full spectrum of benefits.


Author(s):  
Roger Yee ◽  
Alan Oswald

A new generation of auxiliary ships to enter the U.S. Navy (USN) fleet is the AOE-6 SUPPLY CLASS. These fast combat support ships conduct operations at sea as part of a Carrier Battle group to provide oil, aviation fuel, and ammunition to the carrier and her escorts. The SUPPLY CLASS is the first ship in the entire USN fleet to use a combined gas turbine and diesel generator cooling air intake system to cool its respective engine modules. The cooling air intake was designed this way to save on costs. As the ships in this class continued with operations and problems of insufficient supply of cooling air for the gas turbines modules started surfacing, the entire intake system required investigation and analysis. Since the gas turbines and diesel generators share a common cooling air trunk, they were competing for air. This paper will outline the tests that were performed to determine the problems, the recommended solutions, and the lessons learned from the investigations.


Sign in / Sign up

Export Citation Format

Share Document