scholarly journals Differentiation ofCoxiella burnetiiby Sequence Analysis of the Gene(com1)Encoding a 27-kDa Outer Membrane Protein

1997 ◽  
Vol 41 (11) ◽  
pp. 871-877 ◽  
Author(s):  
Guo Quan Zhang ◽  
Ho To ◽  
Tsuyoshi Yamaguchi ◽  
Hideto Fukushi ◽  
Katsuya Hirai
1995 ◽  
Vol 177 (12) ◽  
pp. 3556-3562 ◽  
Author(s):  
D R Blanco ◽  
C I Champion ◽  
M M Exner ◽  
H Erdjument-Bromage ◽  
R E Hancock ◽  
...  

2016 ◽  
Vol 113 (38) ◽  
pp. 10690-10695 ◽  
Author(s):  
Zuowei Wu ◽  
Balamurugan Periaswamy ◽  
Orhan Sahin ◽  
Michael Yaeger ◽  
Paul Plummer ◽  
...  

Infections due to clonal expansion of highly virulent bacterial strains are clear and present threats to human and animal health. Association of genetic changes with disease is now a routine, but identification of causative mutations that enable disease remains difficult. Campylobacter jejuni is an important zoonotic pathogen transmitted to humans mainly via the foodborne route. C. jejuni typically colonizes the gut, but a hypervirulent and rapidly expanding clone of C. jejuni recently emerged, which is able to translocate across the intestinal tract, causing systemic infection and abortion in pregnant animals. The genetic basis responsible for this hypervirulence is unknown. Here, we developed a strategy, termed “directed genome evolution,” by using hybridization between abortifacient and nonabortifacient strains followed by selection in an animal disease model and whole-genome sequence analysis. This strategy successfully identified SNPs in porA, encoding the major outer membrane protein, are responsible for the hypervirulence. Defined mutagenesis verified that these mutations were both necessary and sufficient for causing abortion. Furthermore, sequence analysis identified porA as the gene with the top genome-wide signal of adaptive evolution using Fu’s Fs, a population genetic metric for recent population size changes, which is consistent with the recent expansion of clone “sheep abortion.” These results identify a key virulence factor in Campylobacter and a potential target for the control of this zoonotic pathogen. Furthermore, this study provides general, unbiased experimental and computational approaches that are broadly applicable for efficient elucidation of disease-causing mutations in bacterial pathogens.


1997 ◽  
Vol 179 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
C I Champion ◽  
D R Blanco ◽  
M M Exner ◽  
H Erdjument-Bromage ◽  
R E Hancock ◽  
...  

2003 ◽  
Vol 71 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Chuanmin Cheng ◽  
Christopher D. Paddock ◽  
Roman Reddy Ganta

ABSTRACT Ehrlichia chaffeensis, a tick-transmitted rickettsial agent, is responsible for human monocytic ehrlichiosis (HME). In this study, we genetically mapped 10 isolates obtained from HME patients. Sequence analysis of the 28-kDa outer membrane protein (OMP) multigene locus spanning 6 of the 22 tandemly arranged genes identified three distinct genetic groups with shared homology among isolates within each group. Isolates in Groups I and III contained six genes each, while Group II isolates had a gene deletion. There were two regions on the locus where novel gene deletion or insertion mutations occurred, resulting in the net loss of one gene in Group II isolates. Numerous nucleotide differences among genes in isolates of each group also were detected. The shared homology among isolates in each group for the 28-kDa OMP locus suggests the derivation of clonal lineages. Transcription and translation analysis of the locus revealed differences in the expressed genes of different group isolates. Analysis of the 120-kDa OMP gene and variable-length PCR target gene showed size variations resulting from loss or gain of long, direct repeats within the protein coding sequences. To our knowledge this is the first study that looked at several regions of the genome simultaneously, and we provide the first evidence of heterogeneity resulting from gene deletion and insertion mutations in the E. chaffeensis genome. Diversity in different genomic regions could be the result of a selection process or of independently evolved genes.


2001 ◽  
Vol 69 (3) ◽  
pp. 1917-1921 ◽  
Author(s):  
Karen B. Register

ABSTRACT The Bordetella bronchiseptica outer membrane protein pertactin is believed to function as an adhesin and is an important protective immunogen. Previous sequence analysis of the pertactin gene identified two regions predicted to encode amino acid repeat motifs. Recent studies have documented DNA sequence heterogeneity in both regions. The present study describes additional variants in these regions, which form the basis for six novel pertactin types. Immunoblotting demonstrated phenotypic heterogeneity in pertactin consistent with the predicted combined sizes of the repeat regions. A revised system for classifying B. bronchiseptica pertactin variants is proposed.


Sign in / Sign up

Export Citation Format

Share Document