posttranslational processing
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 5)

H-INDEX

44
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideki Uedono ◽  
Katsuhito Mori ◽  
Akinobu Ochi ◽  
Shinya Nakatani ◽  
Yuya Miki ◽  
...  

AbstractFetuin-A is an inhibitor of ectopic calcification that is expressed mainly in hepatocytes and is secreted into the circulation after posttranslational processing, including glycosylation and phosphorylation. The molecular weight (MW) of fully modified fetuin-A (FM-fetuin-A) is approximately 60 kDa in an immunoblot, which is much higher than the estimated MW by amino acid sequence. Under conditions of calcification stress such as advanced stage chronic kidney disease, fetuin-A prevents calcification by forming colloidal complexes, which are referred to as calciprotein particles (CPP). Since the significance of CPP in this process is unclear, we investigated the effect of synthetic secondary CPP on the level of FM-fetuin-A in HepG2 cells. Secondary CPP increased the level of FM-fetuin-A in dose- and time-dependent manners, but did not affect expression of mRNA for fetuin-A. Treatment with O- and/or N-glycosidase caused a shift of the 60 kDa band of FM-fetuin-A to a lower MW. Preincubation with brefeldin A, an inhibitor of transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus, completely blocked the secondary CPP-induced increase in FM-fetuin-A. Treatment with BAPTA-AM, an intracellular calcium chelating agent, also inhibited the CPP-induced increase in the FM-fetuin-A level. Secondary CPP accelerate posttranslational processing of fetuin-A in HepG2 cells.


2020 ◽  
Vol 25 (9) ◽  
pp. 1047-1063
Author(s):  
Nathan A. Sallee ◽  
Ernestine Lee ◽  
Atossa Leffert ◽  
Silvia Ramirez ◽  
Arthur D. Brace ◽  
...  

The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2108-P
Author(s):  
ELENA V. ROMANOVA ◽  
STANISLAV RUBAKHIN ◽  
JONATHAN V. SWEEDLER

Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 85 ◽  
Author(s):  
Cristina Nastasă ◽  
Radu Tamaian ◽  
Ovidiu Oniga ◽  
Brîndușa Tiperciuc

Background and objectives: Cancer represents the miscommunication between and within the body cells. The mutations of the oncogenes encoding the MAPK pathways play an important role in the development of tumoral diseases. The mutations of KRAS and BRAF oncogenes are involved in colorectal cancer and melanoma, while the NRAS mutations are associated with melanoma. Thiazolidine-2,4-dione is a versatile scaffold in medicinal chemistry and a useful tool in the development of new antitumoral compounds. The aim of our study was to predict the pharmacokinetic/pharmacodynamic properties, the drug-likeness and lead-likeness of two series of synthetic 5-arylidene(chromenyl-methylene)-thiazolidinediones, the molecular docking on the oncoproteins K-Ras, N-Ras and B-Raf, and to investigate the cytotoxicity of the compounds, in order to select the best structural profile for potential anticancer agents. Materials and Methods: In our paper we studied the cytotoxicity of two series of thiazolidine-2,4-dione derivatives, their ADME-Tox properties and the molecular docking on a mutant protein of K-Ras, two isoforms of N-Ras and an isoform of B-Raf with 16 mutations. Results: The heterocyclic compounds strongly interact with K-Ras and N-Ras right after their posttranslational processing and/or compete with GDP for the nucleotide-binding site of the two GTPases. They are less active against the GDP-bound states of the two targets. All derivatives have a similar binding pattern in the active site of B-Raf. Conclusions: The data obtained encourage the further investigation of the 5-arylidene(chromenyl-methylene)-thiazolidinediones as potential new agents against the oncoproteins K-Ras, N-Ras and B-Raf.


2018 ◽  
Vol 40 (5-6) ◽  
pp. 396-416 ◽  
Author(s):  
Sowmyalakshmi Rasika ◽  
Sandrine Passemard ◽  
Alain Verloes ◽  
Pierre Gressens ◽  
Vincent El Ghouzzi

The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term “Golgipathies” in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.


2017 ◽  
Vol 114 (52) ◽  
pp. 13703-13707 ◽  
Author(s):  
Moh Lan Yap ◽  
Thomas Klose ◽  
Akane Urakami ◽  
S. Saif Hasan ◽  
Wataru Akahata ◽  
...  

Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an “immature” Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.


Bone ◽  
2016 ◽  
Vol 84 ◽  
pp. 120-130 ◽  
Author(s):  
Hiroyuki Yamamoto ◽  
Bruno Ramos-Molina ◽  
Adam N. Lick ◽  
Matthew Prideaux ◽  
Valeria Albornoz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document