Effects of 84-days of bedrest and resistance training on single muscle fibre myosin heavy chain distribution in human vastus lateralis and soleus muscles

2005 ◽  
Vol 185 (1) ◽  
pp. 61-69 ◽  
Author(s):  
P. Gallagher ◽  
S. Trappe ◽  
M. Harber ◽  
A. Creer ◽  
S. Mazzetti ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Bradley A. Ruple ◽  
Joshua S. Godwin ◽  
Paulo H. C. Mesquita ◽  
Shelby C. Osburn ◽  
Casey L. Sexton ◽  
...  

Resistance training increases muscle fiber hypertrophy, but the morphological adaptations that occur within muscle fibers remain largely unresolved. Fifteen males with minimal training experience (24±4years, 23.9±3.1kg/m2 body mass index) performed 10weeks of conventional, full-body resistance training (2× weekly). Body composition, the radiological density of the vastus lateralis muscle using peripheral quantitative computed tomography (pQCT), and vastus lateralis muscle biopsies were obtained 1week prior to and 72h following the last training bout. Quantification of myofibril and mitochondrial areas in type I (positive for MyHC I) and II (positive for MyHC IIa/IIx) fibers was performed using immunohistochemistry (IHC) techniques. Relative myosin heavy chain and actin protein abundances per wet muscle weight as well as citrate synthase (CS) activity assays were also obtained on tissue lysates. Training increased whole-body lean mass, mid-thigh muscle cross-sectional area, mean and type II fiber cross-sectional areas (fCSA), and maximal strength values for leg press, bench press, and deadlift (p<0.05). The intracellular area occupied by myofibrils in type I or II fibers was not altered with training, suggesting a proportional expansion of myofibrils with fCSA increases. However, our histological analysis was unable to differentiate whether increases in myofibril number or girth occurred. Relative myosin heavy chain and actin protein abundances also did not change with training. IHC indicated training increased mitochondrial areas in both fiber types (p=0.018), albeit CS activity levels remained unaltered with training suggesting a discordance between these assays. Interestingly, although pQCT-derived muscle density increased with training (p=0.036), suggestive of myofibril packing, a positive association existed between training-induced changes in this metric and changes in mean fiber myofibril area (r=0.600, p=0.018). To summarize, our data imply that shorter-term resistance training promotes a proportional expansion of the area occupied by myofibrils and a disproportional expansion of the area occupied by mitochondria in type I and II fibers. Additionally, IHC and biochemical techniques should be viewed independently from one another given the lack of agreement between the variables assessed herein. Finally, the pQCT may be a viable tool to non-invasively track morphological changes (specifically myofibril density) in muscle tissue.


2000 ◽  
Vol 88 (2) ◽  
pp. 627-633 ◽  
Author(s):  
David L. Williamson ◽  
Michael P. Godard ◽  
David A. Porter ◽  
David L. Costill ◽  
Scott W. Trappe

The purpose of this study was to examine myosin heavy chain (MHC) and myosin light chain (MLC) isoforms following 12 wk of progressive resistance training (PRT). A needle biopsy was taken from the vastus lateralis to determine fiber-type expression [ATPase (pH 4.54) and MHC/MLC] in seven healthy men (age = 74.0 ± 1.8 yr). Subjects were also tested for 1-repetition maximum (1-RM), pre- and posttraining. The progressive knee extensor protocol consisted of three sets at 80% of 1-RM 3 days/wk for 12 wk. Freeze-dried, single muscle fibers were dissected for MHC and MLC analysis and then subjected to SDS-PAGE and silver staining, pre- and posttraining. MHC expression increased in the I (10.4%; P < 0.05) and decreased in I/IIa (9.0%; P < 0.05), I/IIa/x (0.9%; P < 0.05), and IIa/x (8.9%; P < 0.05) isoforms, with no change in the IIa and IIx isoforms, pre- vs. posttraining (total fibers = 3,059). The MLC3f-to-MLC2 ratio did not change with the PRT in either the MHC I or MHC IIa isoforms (total fibers = 902), pre- to posttraining. ATPase fiber distribution did not significantly differ following training (I: 50.4 ± 6.7 vs. 51.9 ± 7.9, IIa: 36.8 ± 5.3 vs. 41.1 ± 7.0, IIb: 12.8 ± 5.6 vs. 7.0 ± 4.0%; pre- vs. posttraining, respectively). 1-RM increased (51.9%; P< 0.05) from pre- to posttraining. The PRT provide a stimulus for alterations in MHC isoforms, which demonstrated a decrease in all hybrid isoforms and an increase in MHC I expression (not found in the ATPase results), unlike the MLC ratio (3:2), which was not altered with training.


Author(s):  
Bradley A. Ruple ◽  
Joshua S. Godwin ◽  
Paulo H. C. Mesquita ◽  
Shelby C. Osburn ◽  
Casey L. Sexton ◽  
...  

Resistance training increases myofiber hypertrophy, but the morphological adaptations that occur within myofibers remain largely unresolved. Fifteen males with minimal training experience (24&plusmn;4 years, 17.9&plusmn;1.4 kg/m2 lean body mass index) performed 10 weeks of conventional, full-body resistance training (2x weekly). Body composition, the radiological density of the vastus lateralis muscle using peripheral quantitative computed tomography (pQCT), and vastus lateralis muscle biopsies were obtained one week prior to and 72 hours following the last training bout. Fiber typing and the quantification of myofibril and mitochondrial areas per fiber were performed using histology/immunohistochemistry (IHC) techniques. Relative myosin heavy chain and actin protein abundances per wet muscle weight as well as citrate synthase (CS) activity assays were also obtained on tissue lysates. Training increased whole-body lean mass, mid-thigh muscle cross-sectional area, various strength metrics, and mean and type II fiber cross sectional areas (fCSA) (p&lt;0.05). Myofibril areas in type I or II fibers were not altered with training, suggesting a proportional expansion with fCSA increases. Relative myosin heavy chain and actin protein abundances also did not change with training. IHC indicated training increased mitochondrial areas in both fiber types (p=0.018). However, CS activity levels remained unaltered with training. Interestingly, although pQCT-derived muscle density increased with training (p=0.036), suggestive of myofibril packing, a positive association existed between training-induced changes in this metric and changes in type I+II myofibril areas (r=0.600, p=0.018). Shorter-term resistance training seemingly involves a proportional expansion of myofibrils and an accelerated expansion of mitochondria in type I and II fibers. Additionally, histological and biochemical techniques should be viewed independently from one another given the lack of agreement between the variables assessed herein. Finally, the pQCT may be a viable tool to non-invasively track morphological changes in muscle tissue.


2019 ◽  
Vol 58 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Emre Gok ◽  
Fares Alghanem ◽  
Eunice Lim ◽  
Dylan Sarver ◽  
Logan Eckhardt ◽  
...  

2011 ◽  
Vol 294 (8) ◽  
pp. 1393-1400 ◽  
Author(s):  
Rodrigo Wagner Alves De Souza ◽  
Andreo Fernando Aguiar ◽  
Fernanda Regina Carani ◽  
Gerson Eduardo Rocha Campos ◽  
Carlos Roberto Padovani ◽  
...  

1999 ◽  
Vol 13 (4) ◽  
pp. 850 ◽  
Author(s):  
F. Maltais ◽  
M.J. Sullivan ◽  
P LeBlanc ◽  
B.d Duscha ◽  
F.h Schachat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document