Association of aninsulin-like growth factor 1gene microsatellite with phenotypic variation and estimated breeding values of growth traits in Canchim cattle

2008 ◽  
Vol 39 (5) ◽  
pp. 480-485 ◽  
Author(s):  
P. C. Andrade ◽  
D. A. Grossi ◽  
C. C. P. Paz ◽  
M. M. Alencar ◽  
L. C. A. Regitano ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Masoud Negahdary ◽  
Abbas Hajihosseinlo ◽  
Marziyeh Ajdary

Molecular biology techniques genetic improvement by facilitating identification, mapping and analysis of polymorphism of genes by encoding proteins that act on metabolic pathways involved in economically interesting traits. This use of genetic markers can aid identification of those animals with the highest breeding values in sheep. On the basis of sheep genome mapping, information was examined on the ovine IGF1 and PIT1 genes as a possible genetic marker for growth traits in sheep. The current study was designed to estimate the frequencies of putative IGF-1 and PIT-1 genes SNPs and investigate associations with calculated EBVs of growth traits in Makooei sheep. PCR-SSCP analysis of the exon1 of IGF-I gene and include a part of intron2, exon3 and a part of intron3 and PIT-1 gene revealed the following banding patterns; three (AA, AG, GG) and four AA (p1), AB (p2), CC (p3), CD (p4), banding patterns respectively. Results from this study demonstrated higher performance of AA animals in BW and GBW, and AG animal in WW and W6 that may be related to the role of IGF-1 at the pre-puberty and puberty stages. Also higher performance of p3 animals in W9, YW and GSN, and p1 animal in GNY may be related to the PIT-1 role in post-puberty.


2011 ◽  
Vol 22 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Mojtaba Tahmoorespur ◽  
Amir Taheri ◽  
Hamid Gholami ◽  
Maziar Ansary

2013 ◽  
Vol 18 (4) ◽  
pp. 766-773
Author(s):  
Rong LI ◽  
Junjie BAI ◽  
Shengjie LI ◽  
jiexiang WANG ◽  
Xing YE

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 9-9
Author(s):  
Johnna L Baller ◽  
Stephen D Kachman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract Economically relevant traits (ERT) are routinely collected within commercial segments of the beef industry but are rarely included in genetic evaluations because of unknown pedigrees. Individual relationships could be resurrected with genomics, which would be costly; pooling DNA and phenotypic data provides a cost-effective solution. A simulated beef cattle population consisting of 15 generations was genotyped with approximately 50k markers (841 quantitative trait loci were located across the genome) and phenotyped for a moderately heritable trait. Individuals from generation 15 were included in pools (observed genotype and phenotype were mean values of a group). Estimated breeding values (EBV) were generated from a single-step GBLUP model. The effects of pooling strategy (random and minimizing or uniformly maximizing phenotypic variation), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding values) were quantified. Greatest EBV accuracies of sires and dams were observed when no gap between genotyped parents and pooled offspring occurred. The EBV accuracies resulting from pools were greater than no data from generation 15 regardless of sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% and 9% over random pooling and uniformly maximizing phenotypic variation, respectively. Pool size of 2 was the only scenario that did not significantly decrease EBV accuracy compared to individual data when pools were formed randomly or by uniformly maximizing phenotypic variation (P > 0.05). Pool sizes of 2, 10, 20, or 50 did not generally lead to EBV accuracies that were statistically different than individual data when pools were constructed to minimize phenotypic variation (P > 0.05). Pooled genotyping to garner commercial-level phenotypes for genetic evaluations seems plausible, although differences exist depending on pool size and pool formation strategy. The USDA is an equal opportunity employer.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Evert W. Brascamp ◽  
Piter Bijma

Abstract Background In honey bees, observations are usually made on colonies. The phenotype of a colony is affected by the average breeding value for the worker effect of the thousands of workers in the colony (the worker group) and by the breeding value for the queen effect of the queen of the colony. Because the worker group consists of multiple individuals, interpretation of the variance components and heritabilities of phenotypes observed on the colony and of the accuracy of selection is not straightforward. The additive genetic variance among worker groups depends on the additive genetic relationship between the drone-producing queens (DPQ) that produce the drones that mate with the queen. Results Here, we clarify how the relatedness between DPQ affects phenotypic variance, heritability and accuracy of the estimated breeding values of replacement queens. Second, we use simulation to investigate the effect of assumptions about the relatedness between DPQ in the base population on estimates of genetic parameters. Relatedness between DPQ in the base generation may differ considerably between populations because of their history. Conclusions Our results show that estimates of (co)variance components and derived genetic parameters were seriously biased (25% too high or too low) when assumptions on the relationship between DPQ in the statistical analysis did not agree with reality.


Heredity ◽  
2020 ◽  
Vol 126 (1) ◽  
pp. 206-217
Author(s):  
Xiang Ma ◽  
Ole F. Christensen ◽  
Hongding Gao ◽  
Ruihua Huang ◽  
Bjarne Nielsen ◽  
...  

AbstractRecords on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.


Sign in / Sign up

Export Citation Format

Share Document