Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium

1987 ◽  
Vol 17 (2) ◽  
pp. 341-356 ◽  
Author(s):  
S. J. ORMEROD ◽  
P. BOOLE ◽  
C. P. McCAHON ◽  
N. S. WEATHERLEY ◽  
D. PASCOE ◽  
...  
1994 ◽  
Vol 45 (2) ◽  
pp. 209 ◽  
Author(s):  
PE Davies ◽  
LSJ Cook ◽  
JL Barton

Concentrations of the triazine herbicides atrazine, simazine, cyanazine, metribuzin and propazine were determined in streams draining forestry and agricultural catchments in Tasmania, Australia, between 1989 and 1992. Atrazine and simazine were used extensively by the forestry industry in a winter spraying programme, and applications of the other herbicides occurred in cropped agricultural catchments during spring and summer. Of 29 streams sampled intensively for triazines, 20 contained detectable residues. Median contaminations over all samples were 2.85, 1.05, <0.05, <0.05 and <0.05 �g L-1 for atrazine, simazine, cyanazine, metribuzin and propazine, respectively. All herbicide concentrations ranged over several orders of magnitude up to 53 mg L-1, with atrazine and simazine having significantly higher concentrations than the others. Atrazine concentrations were examined in streams draining forestry plantations for periods of up to two years. A decline in concentration was observed with time, but this was strongly influenced by rainfall events. Atrazine contamination from single spraying events persisted at a low level for up to 16 months. Contamination of Big Creek with atrazine to 22�g L-1 after aerial spraying led to an increase in stream invertebrate drift only on the day of spraying and to a short-term increase in movement of brown trout. On examination of biological effects of triazines in surface waters reported in the literature, it was concluded that the observed frequent contamination of Tasmanian streams with triazines may cause occasional minor short-term disturbance to stream communities.


2010 ◽  
Vol 23 (1) ◽  
pp. 47-64 ◽  
Author(s):  
Fátima Martel ◽  
Rosário Monteiro ◽  
Conceição Calhau

Polyphenols are a group of widely distributed phytochemicals present in most foods of vegetable origin. A growing number of biological effects have been attributed to these molecules in the past few years and only recently has their interference with the transport capacity of epithelial barriers received attention. This review will present data obtained concerning the effect of polyphenols upon the transport of some compounds (organic cations, glucose and the vitamins thiamin and folic acid) at the intestinal and placental barriers. Important conclusions can be drawn: (i) different classes of polyphenols affect transport of these bioactive compounds at the intestinal epithelia and the placenta; (ii) different compounds belonging to the same phenolic family often possess opposite effects upon transport of a given molecule; (iii) the acute and chronic/short-term and long-term exposures to polyphenols do not produce parallel results and, therefore, care should be taken when extrapolating results; (iv) the effect of polyphenolics in combination may be very different from the expected ones taking into account the effect of each of these compounds alone, and so care should be taken when speculating on the effect of a drink based on the effect of one component only; (v) care should be taken in drawing conclusions for alcoholic beverages from results obtained with ethanol alone. Although most of the data reviewed in the present paper refer to in vitro experiments with cell-culture systems, these studies raise a concern about possible changes in the bioavailability of substrates upon concomitant ingestion of polyphenols.


2002 ◽  
pp. 677-688 ◽  
Author(s):  
ML Barreiro ◽  
L Pinilla ◽  
E Aguilar ◽  
M Tena-Sempere

OBJECTIVE: GH secretagogues (GHSs) elicit a variety of biological effects in several endocrine and non-endocrine target tIssues, including activation of the hypothalamic-pituitary-adrenal axis. The latter is mainly carried out through a central hypothalamic action; yet the possibility of additional effects directly at the adrenal level cannot be ruled out. The aims of this study were to evaluate the expression and homologous regulation of the GHS-receptor (GHS-R) gene in rat adrenal and to assess the effects of synthetic (GH releasing peptide-6 - GHRP-6) and natural (ghrelin) ligands of GHS-R upon basal and ACTH-stimulated corticosterone secretion in vitro. DESIGN AND METHODS: Analysis of adrenal expression of target mRNAs (GHS-R, GHS-R1a, ghrelin, and several steroidogenic factors) was conducted by means of primer-specific, semi-quantitative RT-PCR. Evaluation of corticosterone secretion by incubated adrenal tIssue was carried out by specific RIA. RESULTS: RT-PCR analysis demonstrated expression of the GHS-R gene, but not of the gene encoding the cognate ligand ghrelin, in rat adrenal. Moreover, expression of the mRNA coding for the type 1a GHS-R (GHS-R1a), i.e. the biologically active receptor form, was demonstrated. The adrenal expression of the GHS-R message appeared under the regulation of homologous signals in vitro, as short-term incubation of adrenal samples in serum-free medium induced a significant increase in GHS-R mRNA levels that was inhibited by exposure to different doses of GHRP-6 (10(-9)-10(-5) mol/l) or ghrelin (10(-7) mol/l). Notably, an opposite pattern of homologous regulation of GHS-R gene expression was observed at the pituitary. Finally, short-term stimulation with increasing concentrations of GHRP-6 (10(-9)-10(-5) mol/l) or ghrelin (10(-7) mol/l) failed to alter basal and ACTH-stimulated corticosterone secretion in vitro, neither did it modify ACTH-stimulated mRNA expression levels of several upstream elements in the steroidogenic route: the steroidogenic acute regulatory (StAR) protein, and the enzymes P450 cholesterol side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). CONCLUSIONS: Our study provides novel evidence for the expression and homologous regulation of the GHS-R gene in rat adrenal. However, our results cast doubts on the possibility of direct adrenal actions of ligands of the GHS-R in the regulation of corticosterone secretion in the rat.


2020 ◽  
Author(s):  
Roman Taday ◽  
Marianne Grüneberg ◽  
Ingrid DuChesne ◽  
Janine Reunert ◽  
Thorsten Marquardt

Abstract BackgroundPMM2-CDG (CDG-Ia) is the most frequent N-glycosylation disorder. While supplying mannose to PMM2-deficient fibroblasts corrects the altered N-glycosylation in vitro, short term therapeutic approaches with mannose supplementation in PMM2-CDG patients have been unsuccessful. Mannose found no further mention in the design of a potential therapy for PMM2-CDG in the past years, as it applies as ineffective. This retrospective study analyzes the first long term mannose supplementation in 20 PMM2-CDG patients. Mannose was given at a total of 1–2 g mannose/kg b.w./d divided into 5 single doses over a mean time of 60,7 months. Protein glycosylation, blood mannose concentration and clinical presentation were monitored in everyday clinical practice.ResultsAfter a mean time period of more than 1 year the majority of patients showed significant improvements in protein glycosylation.ConclusionLong-term dietary D-mannose supplementation shows biological effects in PMM2-CDG, an inherited disorder of mannose metabolism. It improves glycosylation in the majority of patients and could become the first cornerstone in the treatment of this disease.


2003 ◽  
Vol 21 (4-5) ◽  
pp. 287-293 ◽  
Author(s):  
Yoshihiro Matsumoto ◽  
Hideki Sato ◽  
Hironobu Miyai ◽  
Motoyoshi Sato ◽  
Hiroyuki Morita ◽  
...  

2005 ◽  
Vol 46 (2) ◽  
pp. 257-263 ◽  
Author(s):  
Maria Cosenza ◽  
Monica Civallero ◽  
Stefano Sacchi ◽  
Raffaella Marcheselli ◽  
Samantha Pozzi

1978 ◽  
Vol 56 (19) ◽  
pp. 2424-2433 ◽  
Author(s):  
T. C. Hutchinson ◽  
W. Freedman

Data are presented on the effects of experimental crude oil spills made on two subarctic boreal forest plant communities near Norman Wells, N.W.T. Spray spills of fresh unweathered crude oil at an intensity of 9.1 ℓ/m2 had a general herbicidal effect and caused the death of any green tissue coming in direct contact with the oil. Death of lichens and mosses was rapid and complete. For some higher plants, a considerable lag period occurred between the time of the spill and the time of death (up to 4 years for some individuals of Picea mariana). For others, death occurred during the first winter, with marked effects on cover values in the spring. These effects resulted in large decreases in total plant cover and frequency at spill sites. However, within a few weeks, and in subsequent years, some species developed regrowth shoots. Other species survived as underground rhizomes for a number of years prior to their reappearance above ground (i.e., Equisetum scirpoides). Limited seedling establishment by vascular plants was first observed in the fourth postspill growing season, when some sporeling establishment was also noted for several bryophyte species. No Picea mariana regeneration has occurred in the spill plots in the six postspill growing seasons monitored thus far.Crude oil spills made in winter were found to be less damaging than equivalent summer spills in their short-term biological effects and on rates of recovery and species affected. Initial observations indicate that a summer diesel oil spill shows roughly equivalent toxicity to a summer crude oil spill of the same intensity. Comparisons between an intensive spill (8500 ℓ) made at one point and dispersed spray spills indicate that the former are far less damaging per unit of oil applied to the plant community, with severe detrimental effects being largely limited to areas of direct surface contamination. In the point spill examined, most of the oil percolated downwards and then laterally. Surface vegetation growing above areas with subsurface horizons contaminated by oil was not greatly affected in the first 2 years. An increased area of damage appeared in postspill years 5 and 6, including death of Picea mariana. Oil also appeared to move laterally in 1976 when severe rains occurred, and the oiled area increased somewhat.Limited short-term effects of the spill treatments on depth of active layer thaw have been noted in this study, but these initial effects were not maintained after the first postspill growing season. The low rates of oil application make the conclusions about the effects of large spills on active layer stability conjectural. Potential effects on vegetation are much more firmly based. Oil in the boreal forest soil appeared to retain toxic properties throughout the 5-year study period.


Sign in / Sign up

Export Citation Format

Share Document