Seasonal influence of brook trout and mottled sculpin on lower trophic levels in an Appalachian stream

2009 ◽  
Vol 54 (3) ◽  
pp. 524-535 ◽  
Author(s):  
B. M. CHEEVER ◽  
K. S. SIMON
1992 ◽  
Vol 49 (10) ◽  
pp. 2093-2103 ◽  
Author(s):  
José A. Bechara ◽  
Guy Moreau ◽  
Dolors Planas

The impact of fish predation on epibenthic organisms at different trophic levels was studied in a series of replicated experimental outdoor channels fed by a boreal forest stream (Québec, Canada). Brook trout (Salvelinus fontinalis) were introduced into five of 10 channels according to a randomized block experimental design. Periphyton biomass (expressed as total chlorophyll a and total organic matter) and macroinvertebrate biomass were measured four times during the summer. The biomass of small insects such as Chironomidae was always higher in the presence than in the absence of fish, while the biomass of larger invertebrates such as Baetis (Ephemeroptera) and Psychoglypha subborealis (Trichoptera) was reduced in the presence of fish. Periphyton biomass was significantly greater in channels with fish on the first sampling date after fish introduction but not at later dates. Complementary cage experiments, involving both the inclusion and exclusion of selected invertebrates from periphyton-covered surfaces, demonstrated that the presence of Baetis can reduce the periphytic biomass, while the presence of P. subborealis can reduce the biomass of Chironomidae. Overall, these results suggest that size-selective predation by brook trout can cause profound changes in the structure of epibenthic communities at primary as well as secondary trophic levels.


Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


2011 ◽  
Vol 4 (8) ◽  
pp. 1-3
Author(s):  
S. AYYANAR S. AYYANAR ◽  
◽  
Dr. M. A. K. Pillai Dr. M. A. K. Pillai ◽  
Dr. N. Murugesan Dr. N. Murugesan

2016 ◽  
Vol 15 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Maria-Ema Faciu ◽  
Francois Xavier Nshimiyimana ◽  
Souad El Blidi ◽  
Abdellah El Abidi ◽  
Abdelmajid Soulaymani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document