gape size
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ian R. McFadden ◽  
Susanne A. Fritz ◽  
Niklaus E. Zimmermann ◽  
Loïc Pellissier ◽  
W. Daniel Kissling ◽  
...  

Species interactions are influenced by the trait structure of local multi-trophic communities. However, it remains unclear whether mutualistic interactions in particular can drive trait patterns at the global scale, where climatic constraints and biogeographic processes gain importance. Here we evaluate global relationships between traits of frugivorous birds and palms (Arecaceae), and how these relationships are affected, directly or indirectly, by assemblage richness, climate and biogeographic history. We leverage a new and expanded gape size dataset for nearly all avian frugivores, and find a positive relationship between gape size and fruit size, i.e., trait matching, which is influenced indirectly by palm richness and climate. We also uncover a latitudinal gradient in trait matching strength, which increases towards the tropics and varies among zoogeographic realms. Taken together, our results suggest trophic interactions have consistent influences on trait structure, but that abiotic, biogeographic and richness effects also play important, though sometimes indirect, roles in shaping the functional biogeography of mutualisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Finn Rehling ◽  
Bogdan Jaroszewicz ◽  
Leonie Victoria Braasch ◽  
Jörg Albrecht ◽  
Pedro Jordano ◽  
...  

The inability of small-gaped animals to consume very large fruits may limit seed dispersal of the respective plants. This has often been shown for large-fruited plant species that remain poorly dispersed when large-gaped animal species are lost due to anthropogenic pressure. Little is known about whether gape-size limitations similarly influence seed dispersal of small-fruited plant species that can show a large variation in fruit size within species. In this study, fruit sizes of 15 plant species were compared with the gape sizes of their 41 animal dispersers in the temperate, old-growth Białowieża Forest, Poland. The effect of gape-size limitations on fruit consumption was assessed at the plant species level, and for a subset of nine plant species, also at the individual level, and subindividual level (i.e., fruits of the same plant individual). In addition, for the species subset, fruit-seed trait relationships were investigated to determine whether a restricted access of small-gaped animals to large fruits results in the dispersal of fewer or smaller seeds per fruit. Fruit sizes widely varied among plant species (74.2%), considerably at the subindividual level (17.1%), and to the smallest extent among plant individuals (8.7%). Key disperser species should be able to consume fruits of all plant species and all individuals (except those of the largest-fruited plant species), even if they are able to consume only 28-55% of available fruits. Fruit and seed traits were positively correlated in eight out of nine plant species, indicating that gape size limitations will result in 49% fewer (in one) or 16–21% smaller seeds (in three plant species) dispersed per fruit by small-gaped than by large-gaped main dispersers, respectively. Our results show that a large subindividual variation in fruit size is characteristic for small-fruited plant species, and increases their connectedness with frugivores at the level of plants species and individuals. Simultaneously, however, the large variation in fruit size leads to gape-size limitations that may induce selective pressures on fruit size if large-gaped dispersers become extinct. This study emphasizes the mechanisms by which gape-size limitation at the species, individual and subindividual level shape plant-frugivore interactions and the co-evolution of small-fruited plants.


2021 ◽  
Vol 17 (5) ◽  
pp. 20210045
Author(s):  
Zackary A. Graham

Humans are inherently fascinated by exaggerated morphological structures such as elk antlers and peacock trains. Because these traits are costly to develop and wield, the environment in which they are used can select for specific sizes or shapes to minimize such costs. In aquatic environments, selection to reduce drag can constrain the form of exaggerated structures; this is presumably why exaggerated morphologies are less common in aquatic environments compared to terrestrial ones. Interestingly, some crayfish species possess claws with an exaggerated gape between their pinching fingers, but the function of this claw gape is unknown. Here, I describe and test the function of the exaggerated claw gape of the New River crayfish, Cambarus chasmodactylus . Specifically, I test the hypothesis that the claw gape aids in movement against flowing currents. I found that both claw size and gape size were sexually dimorphic in this species and that males have disproportionately larger gapes compared to females. By experimentally covering their claw gape and testing crayfish locomotor performance, I found that individuals with their gape blocked were 30% slower than crayfish with a natural gape. My results highlight a unique adaptation that compensates for wielding an exaggerated structure in aquatic environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phyo Thura Aung ◽  
Chiho Kato ◽  
Akiyo Fujita ◽  
Yasunori Abe ◽  
Takuya Ogawa ◽  
...  

AbstractThe effect of altered occlusal force on masticatory-related neuromuscular control, which projects from the anterior part of the cortical masticatory area (A-CMA), during growth remains unclear. This study sought to evaluate the effect of occlusal hypofunction on neuromuscular development of jaw muscle activities and cortically-induced rhythmic jaw movements (RJMs) in growing rats. Sixty-four 2-week-old male albino Wistar rats were divided into the control (fed normal diet) and experimental (fed soft diet) groups soon after weaning. Electromyographic activity was recorded at 5, 7, 9, and 11 weeks from the right masseter and anterior digastric along with RJMs. We found a significantly longer onset latency and smaller peak-to-peak amplitude in the experimental group than that in the control group. The RJMs showed an increase in gape size and lateral excursion until up to 9 weeks in both groups. However, both the average gape size and lateral excursion were significantly smaller in the experimental group than that in the control group after 9 weeks. The jaw movement pattern also showed a significant decrease at the maximum opening period in the experimental group. Our findings indicate that inadequate occlusal function during growth alters neuromuscular control of masticatory behaviors and impairs the pattern of RJMs.


2021 ◽  
Author(s):  
Phyo Thura Aung ◽  
Chiho Kato ◽  
Akiyo Fujita ◽  
Yasunori Abe ◽  
Takuya Ogawa ◽  
...  

Abstract The effect of altered occlusal force on masticatory-related neuromuscular control, which projects from the anterior part of the cortical masticatory area (A-CMA), during growth remains unclear. This study sought to evaluate the effect of occlusal hypofunction on neuromuscular development of jaw muscle activities and cortically-induced rhythmic jaw movements (RJMs) in growing rats. Sixty-four two-week-old male albino Wistar rats were divided into the control (fed normal diet) and experimental (fed soft diet) groups soon after weaning. Electromyographic activity was recorded at 5, 7, 9, and 11 weeks from the right masseter and anterior digastric along with RJMs. We found a significantly longer onset latency and smaller peak-to-peak amplitude in the experimental group than that in the control group. The RJMs showed an increase in gape size and lateral excursion until up to 9 weeks in both groups. However, both the average gape size and lateral excursion were significantly smaller in the experimental group than that in the control group after 9 weeks. The jaw movement pattern also showed a significant decrease at the maximum opening period in the experimental group. Our findings indicate that inadequate occlusal function during growth alters neuromuscular control of masticatory behaviors and impairs the pattern of RJMs.


Author(s):  
Sara Roje ◽  
Luise Richter ◽  
Susanne Worischka ◽  
Marek Let ◽  
Lukáš Veselý ◽  
...  

Aquatic biodiversity is threatened by spread of invasive alien species. Round goby Neogobius melanostomus is an invasive fish in large European rivers as well as in coastal waters near their mouths and marbled crayfish Procambarus virginalis is a highly invasive crustacean. Both are small, bottom-dwelling species occupying similar habitat and shelters and utilizing similar food sources. We hypothesized that goby presents a threat to both native and non-native astacofauna in invaded ecosystems. We tested this through laboratory experiments designed to determine aggressiveness and competitiveness of goby against marbled crayfish as a model for other North American cambarid crayfish, assessing goby prey size selection and competition with marbled crayfish for space and shelter. Gobies showed high aggressiveness and dominance over the crayfish. Goby predation on juvenile crayfish was limited by mouth gape size. In goby/crayfish pairs of similar weight, gobies were more aggressive, although each affected the behavior of the other.


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


2019 ◽  
Author(s):  
Gunnar Öhlund ◽  
Mats Bodin ◽  
Karin A. Nilsson ◽  
Sven-Ola Öhlund ◽  
Kenyon B. Mobley ◽  
...  

AbstractLake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. While several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we reconstructed the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 357 populations of varying age (26-10 000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs; ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike’s habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.


2018 ◽  
Vol 160 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Jordyn A. Stalwick ◽  
Karen L. Wiebe

Sign in / Sign up

Export Citation Format

Share Document