scholarly journals The HAL3-PPZ1 dependent regulation of nonsense suppression efficiency in yeast and its influence on manifestation of the yeast prion-like determinant [ISP+]

2007 ◽  
Vol 12 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Anna Aksenova ◽  
Iván Muñoz ◽  
Kirill Volkov ◽  
Joaquín Ariño ◽  
Ludmila Mironova
2019 ◽  
Author(s):  
Alexander A. Dergalev ◽  
Alexander I. Alexandrov ◽  
Roman I. Ivannikov ◽  
Michael D. Ter-Avanesyan ◽  
Vitaly V. Kushnirov

AbstractThe yeast [PSI+] prion, formed by the Sup35 (eRF3) protein, can exist as multiple structural variants exhibiting phenotypic variation in the strength of nonsense suppression and mitotic stability. Structure of [PSI+] and its variation is only partly characterized. Here, we mapped the Sup35 proteinase K-resistant amyloid cores of 26 [PSI+] prions of different origin, isolated from yeast cells. In all cases the Sup35 amino acid residues 2-32 were fully resistant and the region up to residue 72 was partially resistant. Proteinase K-resistant structures were also found within regions 73-124, 125-153 and 154-221, but their presence differed between [PSI+] isolates. The [PSI+] phenotype depended mainly, if not solely, on the structure in region 2-72. Structures in region 73-221 were in some cases mitotically unstable and heterogenous. Two distinct digestion patterns were observed for the 2-72 fragment, which correlated with the “strong” and “weak” [PSI+] nonsense-suppressor phenotypes. All [PSI+] with a weak pattern were eliminated by multicopy HSP104 gene and were not toxic when combined with multicopy SUP35. [PSI+] with a strong pattern showed opposite properties, being resistant to multicopy HSP104 and lethal in the presence of multicopy SUP35. Thus, our data suggest existence of two distinct and reliably distinguishable structural classes of [PSI+] rather than a continuum of prions with gradually altering phenotype.ImportancePrions and amyloids are relatively novel and incompletely characterized structures. To understand them better, we mapped amyloid cores of 26 isolates of the Sup35 yeast prion using proteinase K digestion and mass spectrometry. We found that these cores are composed of up to four proteinase K-resistant elements spanning almost the whole length of Sup35 region inessential for viability. However, only the N-terminal element was present in all structures. There are many variants of the Sup35 prion, and these are usually roughly combined into two groups, “strong” and “weak”, based on the strength of their nonsense-suppressor phenotype. However, it was not clear whether such groups could be distinguished by any reliable qualitative criteria. Our data indicate that these groups do exist and can be reliably distinguished based on the N-terminal element digestion pattern and the effects of the multicopy SUP35 and HSP104 genes on these prion variants.


Yeast ◽  
2015 ◽  
Vol 32 (6) ◽  
pp. 479-497 ◽  
Author(s):  
S. P. Zadorsky ◽  
Y. V. Sopova ◽  
D. Y. Andreichuk ◽  
V. A. Startsev ◽  
V. P. Medvedeva ◽  
...  

1991 ◽  
Vol 58 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Muriel B. Herrington ◽  
Johnny Basso ◽  
Maria Faraci ◽  
Chantal Autexier

SummaryThymine requiring strains ofEscherichia colisuppress nonsense and frameshift mutations during translation. Strains with different genetic backgrounds exhibited different nonsense suppression spectra and showed differences in the apparent suppression efficiency. Part of this strain difference is due to a presumably novel gene (tsmA) mapping near 39 min. This gene affects the spectrum and apparent efficiency of suppression, and appears to affect the utilization of thymidine.


2009 ◽  
Vol 30 (1) ◽  
pp. 319-332 ◽  
Author(s):  
James A. Toombs ◽  
Blake R. McCarty ◽  
Eric D. Ross

ABSTRACT Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into β-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains.


1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


Evolution ◽  
2003 ◽  
Vol 57 (7) ◽  
pp. 1498 ◽  
Author(s):  
Joanna Masel ◽  
Aviv Bergman
Keyword(s):  

1988 ◽  
Vol 8 (12) ◽  
pp. 5140-5149
Author(s):  
S S Wang ◽  
A K Hopper

To identify genes involved in pre-tRNA processing, we searched for yeast DNA sequences that specifically enhanced the expression of the SUP4(G37) gene. The SUP4(G37) gene possesses a point mutation at position 37 of suppressor tRNA(Tyr). This lesion results in a reduced rate of pre-tRNA splicing and a decreased level of nonsense suppression. A SUP4(G37) strain was transformed with a yeast genomic library, and the transformants were screened for increased suppressor activity. One transformant contained a plasmid that encoded an unessential gene, STP1, that in multiple copies enhanced the suppression of SUP4(G37) and caused increased production of mature SUP4(G37) product. Disruption of the genomic copy of STP1 resulted in a reduced efficiency of SUP4-mediated suppression and the accumulation of pre-tRNAs. Not all intron-containing pre-tRNAs were affected by the stp1-disruption. At least five of the nine families of pre-tRNAs were affected. Two other species, pre-tRNA(Ile) and pre-tRNA(3Leu), were not. We propose that STP1 encodes a tRNA species-specific product that functions as a helper for pre-tRNA splicing. The STP1 product may interact with pre-tRNAs to generate a structure that is efficiently recognized by splicing machinery.


Sign in / Sign up

Export Citation Format

Share Document