yeast prion
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 31)

H-INDEX

51
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Ankan Bhadra ◽  
Michael Rau ◽  
Jil Daw ◽  
James Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Abstract Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


Author(s):  
Mingyang Wang ◽  
Xiao Wang ◽  
Zhenyun Cheng

The heterologous overexpression states of prion proteins play a critical role in understanding the mechanisms of prion-related diseases. We report herein the identification of soluble monomer and complex states for a bakers’ yeast prion, Sup35, when expressed in E. coli. Two peaks are apparent with the elution of His-tagged Sup35 by imidazole from a Ni affinity column. Peak I contains Sup35 in both monomer and aggregated states. Sup35 aggregate is abbreviated as C-aggregate and includes a non-fibril complex comprising Sup35 aggregate-HSP90-Dna K, ATP synthase β unit (chain D), 30S ribosome subunit, and Omp F. The purified monomer and C-aggregate can remain stable for an extended period of time. Peak II contains Sup35 also in both monomer and aggregated (abbreviated as S-aggregate) states, but the aggregated states are caused by the formation of inter-Sup35 disulfide bonds. This study demonstrates that further assembly of Sup35 non-fibril C-aggregate can be interrupted by the chaperone repertoire system in E. coli.


2021 ◽  
Author(s):  
Ankan K. Bhadra ◽  
Michael J. Rau ◽  
Jil A. Daw ◽  
James A.J. Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


Author(s):  
Nicole J. Wayne ◽  
Katherine E. Dembny ◽  
Tyler Pease ◽  
Farrin Saba ◽  
Xiaohong Zhao ◽  
...  

The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington’s disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [ RNQ + ] and [ PSI + ] prions. When we inactivate Hsp104 in the presence of prion, yeast have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103; whereas with active Hsp104, HttQ103 aggregates slowly accumulate due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates, but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103, but not HttQ103P.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cristina Batlle ◽  
Isabel Calvo ◽  
Valentin Iglesias ◽  
Cian J. Lynch ◽  
Marcos Gil-Garcia ◽  
...  

AbstractA disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.


2021 ◽  
Author(s):  
Sayanta Mahapatra ◽  
Anusha Sarbahi ◽  
Priyanka Madhu ◽  
Hema M. Swasthi ◽  
Samrat Mukhopadhyay

AbstractThe prion-like self-perpetuating conformational conversion is involved in both transmissible neurodegenerative diseases and non-Mendelian inheritance traits. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins. To provide the mechanistic underpinning of the generation and persistence of prefibrillar amyloid seeds that are critical for the prion-like propagation, we studied the effect of Hsp104 disaggregase on the assembly mechanism of a yeast prion determinant of Saccharomyces cerevisiae Sup35. At low sub-stoichiometric concentrations, Hsp104 exhibits a dual role and considerably accelerates the formation of seeding-competent prefibrillar amyloids by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into matured fibers. Hsp104-mediated amyloid species comprise a more ordered packing and display an enhanced autocatalytic self-templating ability compare to amyloids formed without Hsp104. Our findings underscore the key functional and pathological roles of sub-stoichiometric chaperones in prion-like propagation.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Emilie N. Liu ◽  
Giovanna Park ◽  
Junsuke Nohara ◽  
Zhefeng Guo

Amyloid formation is involved in a wide range of neurodegenerative diseases including Alzheimer's and prion diseases. Structural understanding of the amyloid is critical to delineate the mechanism of aggregation and its pathological spreading. Site-directed spin labelling has emerged as a powerful structural tool in the studies of amyloid structures and provided structural evidence for the parallel in-register β-sheet structure for a wide range of amyloid proteins. It is generally accepted that spin labelling does not disrupt the structure of the amyloid fibrils, the end product of protein aggregation. The effect on the rate of protein aggregation, however, has not been well characterized. Here, we employed a scanning mutagenesis approach to study the effect of spin labelling on the aggregation rate of 79 spin-labelled variants of the Ure2 prion domain. The aggregation of Ure2 protein is the basis of yeast prion [URE3]. We found that all spin-labelled Ure2 mutants aggregated within the experimental timeframe of 15 to 40 h. Among the 79 spin-labelled positions, only five residue sites (N23, N27, S33, I35 and G42) showed a dramatic delay in the aggregation rate as a result of spin labelling. These positions may be important for fibril nucleation, a rate-limiting step in aggregation. Importantly, spin labelling at most of the sites had a muted effect on Ure2 aggregation kinetics, showing a general tolerance of spin labelling in protein aggregation studies.


2021 ◽  
pp. 166976
Author(s):  
Anuradhika Puri ◽  
Priyanka singh ◽  
Navinder Kumar ◽  
Rajesh Kumar ◽  
Deepak Sharma
Keyword(s):  
De Novo ◽  

2021 ◽  
Author(s):  
Arnab Bandyopadhyay ◽  
Achinta Sannigrahi ◽  
Krishnananda Chattopadhyay

This study provides a mechanistic description of how the membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein.


2020 ◽  
Author(s):  
Motomasa Tanaka ◽  
Yoshiko Nakagawa ◽  
Howard C.-H. Shen ◽  
Shinju Sugiyama ◽  
Yuri Tomabechi ◽  
...  

Abstract Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust, in vitro reconstituted system of yeast prion propagation and found that Hsp104, Ssa1, and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to the amyloid. Remarkably, we uncovered two distinct, prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperon dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document