scholarly journals Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo.

1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.

1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


2006 ◽  
Vol 27 (5) ◽  
pp. 1545-1557 ◽  
Author(s):  
Priscilla Braglia ◽  
Sandra L. Dugas ◽  
David Donze ◽  
Giorgio Dieci

ABSTRACT A key event in tRNA gene (tDNA) transcription by RNA polymerase (Pol) III is the TFIIIC-dependent assembly of TFIIIB upstream of the transcription start site. Different tDNA upstream sequences bind TFIIIB with different affinities, thereby modulating tDNA transcription. We found that in the absence of Nhp6 proteins, the influence of the 5′-flanking region on tRNA gene transcription is dramatically enhanced in Saccharomyces cerevisiae. Expression of a tDNA bearing a suboptimal TFIIIB binding site, but not of a tDNA preceded by a strong TFIIIB binding region, was strongly dependent on Nhp6 in vivo. Upstream sequence-dependent stimulation of tRNA gene transcription by Nhp6 could be reproduced in vitro, and Nhp6 proteins were found associated with tRNA genes in yeast cells. We also show that both transcription and silencing barrier activity of a tDNAThr at the HMR locus are compromised in the absence of Nhp6. Our data suggest that Nhp6 proteins are important components of Pol III chromatin templates that contribute both to the robustness of tRNA gene expression and to positional effects of Pol III transcription complexes.


1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278 ◽  
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.


1988 ◽  
Vol 8 (1) ◽  
pp. 361-370
Author(s):  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary

We describe the results of our studies of expression of a Saccharomyces cerevisiae amber suppressor tRNA(Leu) gene (SUP53) in mammalian cells in vivo and in cell extracts in vitro. Parallel studies were carried out with the wild-type (Su-) tRNA(Leu) gene. Extracts from HeLa or CV1 cells transcribed both tRNA(Leu) genes. The transcripts were processed correctly at the 5' and 3' ends and accurately spliced to produce mature tRNA(Leu). Surprisingly, when the same tRNA(Leu) genes were introduced into CV1 cells, only pre-tRNAs(Leu) were produced. The pre-tRNAs(Leu) made in vivo were of the same size and contained the 5'-leader and 3'-trailer sequences as did pre-tRNAs(Leu) made in vitro. Furthermore, the pre-tRNAs(Leu) made in vivo were processed to mature tRNA(Leu) when incubated with HeLa cell extracts. A tRNA(Leu) gene from which the intervening sequence had been removed yielded RNAs that also were not processed at either their 5' or 3' termini. Thus, processing of pre-tRNA(Leu) in CV1 cells is blocked at the level of 5'- and 3'-end maturation. One possible explanation of the discrepancy in the results obtained in vivo and in vitro is that tRNA biosynthesis in mammalian cells involves transport of pre-tRNA from the site of its synthesis to a site or sites where processing takes place, and perhaps the yeast pre-tRNAs(Leu) synthesized in CV1 cells are not transported to the appropriate site.


1998 ◽  
Vol 18 (2) ◽  
pp. 703-709 ◽  
Author(s):  
Ling Li ◽  
Rob M. Linning ◽  
Kazunori Kondo ◽  
Barry M. Honda

ABSTRACT Eight different amber suppressor tRNA (suptRNA) mutations in the nematode Caenorhabditis elegans have been isolated; all are derived from members of the tRNATrp gene family (K. Kondo, B. Makovec, R. H. Waterston, and J. Hodgkin, J. Mol. Biol. 215:7–19, 1990). Genetic assays of suppressor activity suggested that individual tRNA genes were differentially expressed, probably in a tissue- or developmental stage-specific manner. We have now examined the expression of representative members of this gene family both in vitro, using transcription in embryonic cell extracts, and in vivo, by assaying suppression of an amber-mutated lacZ reporter gene in animals carrying different suptRNA mutations. Individual wild-type tRNATrp genes and their amber-suppressing counterparts appear to be transcribed and processed identically in vitro, suggesting that the behavior of suptRNAs should reflect wild-type tRNA expression. The levels of transcription of different suptRNA genes closely parallel the extent of genetic suppression in vivo. The results suggest that differential expression of tRNA genes is most likely at the transcriptional rather than the posttranscriptional level and that 5′ flanking sequences play a role in vitro, and probably in vivo as well. Using suppression of a lacZ(Am) reporter gene as a more direct assay of suptRNA activity in individual cell types, we have again observed differential expression which correlates with genetic and in vitro transcription results. This provides a model system to more extensively study the basis for differential expression of this tRNA gene family.


2000 ◽  
Vol 20 (9) ◽  
pp. 3116-3124 ◽  
Author(s):  
Massimo Buvoli ◽  
Ada Buvoli ◽  
Leslie A. Leinwand

ABSTRACT We demonstrate here the first experimental suppression of a premature termination codon in vivo by using an ochre suppressor tRNA acting in an intact mouse. Multicopy tRNA expression plasmids were directly injected into skeletal muscle and into the hearts of transgenic mice carrying a reporter gene with an ochre mutation. A strategy for modulation of suppressor efficiency, applicable to diverse systems and based on tandem multimerization of the tRNA gene, is developed. The product of suppression (chloramphenicol acetyltransferase) accumulates linearly with increases in suppressor tRNA concentration to the point where the ochre-suppressing tRNASer is in four- to fivefold excess over the endogenous tRNASer. The subsequent suppressor activity plateau seems to be attributable to accumulation of unmodified tRNAs. These results define many salient variables for suppression in vivo, for example, for tRNA suppression employed as gene therapy for nonsense defects.


1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.


1988 ◽  
Vol 8 (1) ◽  
pp. 361-370 ◽  
Author(s):  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary

We describe the results of our studies of expression of a Saccharomyces cerevisiae amber suppressor tRNA(Leu) gene (SUP53) in mammalian cells in vivo and in cell extracts in vitro. Parallel studies were carried out with the wild-type (Su-) tRNA(Leu) gene. Extracts from HeLa or CV1 cells transcribed both tRNA(Leu) genes. The transcripts were processed correctly at the 5' and 3' ends and accurately spliced to produce mature tRNA(Leu). Surprisingly, when the same tRNA(Leu) genes were introduced into CV1 cells, only pre-tRNAs(Leu) were produced. The pre-tRNAs(Leu) made in vivo were of the same size and contained the 5'-leader and 3'-trailer sequences as did pre-tRNAs(Leu) made in vitro. Furthermore, the pre-tRNAs(Leu) made in vivo were processed to mature tRNA(Leu) when incubated with HeLa cell extracts. A tRNA(Leu) gene from which the intervening sequence had been removed yielded RNAs that also were not processed at either their 5' or 3' termini. Thus, processing of pre-tRNA(Leu) in CV1 cells is blocked at the level of 5'- and 3'-end maturation. One possible explanation of the discrepancy in the results obtained in vivo and in vitro is that tRNA biosynthesis in mammalian cells involves transport of pre-tRNA from the site of its synthesis to a site or sites where processing takes place, and perhaps the yeast pre-tRNAs(Leu) synthesized in CV1 cells are not transported to the appropriate site.


Sign in / Sign up

Export Citation Format

Share Document