scholarly journals Calculation of the wave propagation angle in complex media: application to turning wave simulations

2009 ◽  
Vol 178 (3) ◽  
pp. 1565-1573 ◽  
Author(s):  
Xiaofeng Jia ◽  
Ru-Shan Wu
Author(s):  
Jun Tang ◽  
Yongming Shen ◽  
Yigang Lv

Coastal waves and near-shore currents have been investigated by many researchers. This paper developed a two-dimensional numerical model of near-shore waves and currents to study breaking wave induced current. In the model, near-shore water wave was simulated by a parabolic mild slope equation incorporating current effect and wave energy dissipation due to breaking, and current was simulated by a nonlinear shallow water equation incorporating wave exerted radiation stress. Wave radiation stress was calculated based on complex wave amplitude in the parabolic mild slope equation, and this result in an effective method for calculating wave radiation stress using an intrinsic wave propagation angle that differs from the ones of using explicit wave propagation angle. Wave and current interactions were considered by cycling the wave and current equation to a steady state. The model was used to study waves and wave-induced longshore currents at the Obaköy coastal water which is located at the Mediterranean coast of Turkey. The numerical results for water wave induced longshore current were validated by measured data to demonstrate the efficiency of the numerical model, and water waves and longshore currents were analyzed based on the numerical results.


Author(s):  
М.С. Лытаев

Рассматривается задача численного моделирования распространения электромагнитных волн в неоднородной тропосфере на основе широкоугольных обобщений метода параболического уравнения. Используется конечно-разностная аппроксимация Паде оператора распространения. Существенно, что в предлагаемом подходе указанная аппроксимация осуществляется одновременно по продольной и поперечной координатам. При этом допускается моделирование произвольного коэффициента преломления тропосферы. Метод не накладывает ограничений на максимальный угол распространения. Для различных условий распространения радиоволн проведено сравнение с методом расщепления Фурье и методом геометрической теории дифракции. Показаны преимущества предлагаемого подхода. This paper is devoted to the numerical simulation of electromagnetic wave propagation in an inhomogeneous troposphere. The study is based on the wide-angle generalizations of the parabolic wave equation. The finite-difference Padé approximation is used to approximate the propagation operator. It is important that, within the proposed approach, the Padé approximation is carried out simultaneously along with the longitudinal and transverse coordinates. At the same time, the proposed approach gives an opportunity to model an arbitrary tropospheric refractive index. The method does not impose restrictions on the maximum propagation angle. The comparison with the split-step Fourier method and the geometric theory of diffraction is discussed. The advantages of the proposed approach are shown.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Raynold Tan ◽  
Andrew Ooi ◽  
Richard D. Sandberg

AbstractThis study seeks to compare different combinations of spatial dicretization methods under a coupled spatial temporal framework in two dimensional wavenumber space. The aim is to understand the effect of dispersion and dissipation on both the convection and diffusion terms found in the two dimensional linearized compressible Navier–Stokes Equations (LCNSE) when a hybrid finite difference/Fourier spectral scheme is used in the x and y directions. In two dimensional wavespace, the spectral resolution becomes a function of both the wavenumber and the wave propagation angle, the orientation of the wave front with respect to the grid. At sufficiently low CFL number where temporal discretization effects can be neglected, we show that a hybrid finite difference/Fourier spectral schemes is more accurate than a full finite difference method for the two dimensional advection equation, but that this is not so in the case of the LCNSE. Group velocities, phase velocities as well as numerical amplification factor were used to quantify the numerical anisotropy of the dispersion and dissipation properties. Unlike the advection equation, the dispersion relation representing the acoustic modes of the LCNSE contains an acoustic terms in addition to its advection and viscous terms. This makes the group velocity in each spatial direction a function of the wavenumber in both spatial directions. This can lead to conditions for which a hybrid Fourier spectral/finite difference method can become less or more accurate than a full finite difference method. To better understand the comparison of the dispersion properties between a hybrid and full FD scheme, the integrated sum of the error between the numerical group velocity $$V^{*}_{grp,full}$$ V g r p , f u l l ∗ and the exact solution across all wavenumbers for a range of wave propagation angle is examined. In the comparison between a hybrid and full FD discretization schemes, the fourth order central (CDS4), fourth order dispersion relation preserving (DRP4) and sixth order central compact (CCOM6) schemes share the same characteristics. At low wave propagation angle, the integrated errors of the full FD and hybrid discretization schemes remain the same. At intermediate wave propagation angle, the integrated error of the full FD schemes become smaller than that of the hybrid scheme. At large wave propagation angle, the integrated error of the full FD schemes diverges while the integrated error of the hybrid discretization schemes converge to zero. At high reduced wavenumber and sufficiently low CFL number where temporal discretization error can be neglected, it was found that the numerical dissipation of the viscous term based on the CDS4, DRP4, CCOM6 and isotropy optimized CDS4 schemes ($$\hbox {CDS4}_{{opt}}$$ CDS4 opt ) schemes was lower than the actual physical dissipation, which is only a function of the cell Reynolds number. The wave propagation angle at which the numerical dissipation of the viscous term approaches its maximum occurs at $$\pi /4$$ π / 4 for the CDS4, DRP4, CCOM6 and $$\hbox {CDS4}_{{opt}}$$ CDS4 opt schemes.


1998 ◽  
Vol 88 (1) ◽  
pp. 18-29
Author(s):  
Lian-Jie Huang ◽  
Michael C. Fehler

Abstract The split-step Fourier propagator is a one-way wave propagation method that has been widely used to simulate primary forward and backward (reflected) deterministic/random wave propagation due to its fast computational speed and limited computer memory requirement. The method is useful for rapid modeling of seismic-wave propagation in heterogeneous media where forward scattered waveforms can be considered to be dominant or reverberations can be ignored. The method is based on a solution to the one-way wave equation that requires expanding the square root of an operator and splitting of the resulting noncommutative operators to allow calculation by transferring wave fields between the space and wavenumber domains. Previous analysis of the accuracy of the method has focused on the error related to only a portion of the approximations involved in the propagator. To better understand the accuracy of the propagator, we present a complete formal and numerical accuracy analyses. Our formal analysis indicates that the dominant error of the propagator increases as the first order in the marching interval. We show that nonsymmetrically and symmetrically split-step marching solutions have the same first-order error term. Their second- and third-order error terms are similar. Therefore, the differences between the accuracy of different split-step marching solutions are insignificant. This conclusion is confirmed by our numerical tests. The relation among the phase error of the split-step Fourier propagator, relative velocity perturbation, and propagation angle is numerically studied. The results suggest that the propagator is accurate for up to a 60° propagation angle from the main propagation direction for media with small relative velocity perturbations (10%).


Sign in / Sign up

Export Citation Format

Share Document