A model of the long-term response of carbon allocation and productivity of forests to increased CO2concentration and nitrogen deposition

1996 ◽  
Vol 2 (4) ◽  
pp. 367-376 ◽  
Author(s):  
BELINDA E. MEDLYN ◽  
RODERICK C. DEWAR
2021 ◽  
pp. 1-19
Author(s):  
Vojtech Kouba ◽  
Juan Camilo Gerlein ◽  
Andrea Benakova ◽  
Marco Antonio Lopez Marin ◽  
Eva Rysava ◽  
...  

Author(s):  
Carlota Rigotti ◽  
Júlia Zomignani Barboza

Abstract The return of foreign fighters and their families to the European Union has mostly been considered a security threat by member States, which consequently adopt repressive measures aimed at providing an immediate, short-term response to this perceived threat. In addition to this strong-arm approach, reintegration strategies have also been used to prevent returnees from falling back into terrorism and to break down barriers of hostility between citizens in the long term. Amidst these different strategies, this paper seeks to identify which methods are most desirable for handling returnees.


2017 ◽  
Vol 13 (11s) ◽  
pp. 35-43 ◽  
Author(s):  
Elena Barbieri ◽  
Daniela Rubino ◽  
Rossella Hakim ◽  
Angela Fini ◽  
Manuela Lenzi ◽  
...  
Keyword(s):  

Author(s):  
Elizabeth Passano ◽  
Carl M. Larsen

The paper deals with the challenge of predicting the extreme response of catenary risers, a topic of both industry and academic interest. Large heave motions introduced at the upper end of a catenary riser can lead to compression and large bending moments in the region immediately above the touch down area. In the worst case, dynamic beam buckling may occur. The focus of the paper will be on understanding the riser behaviour in extreme, low-tension response and in establishing suitable analysis strategies to predict the extreme response. Results from long nonlinear stochastic simulations of many sea states with varying environmental and operating conditions may be combined to describe the long-term response of a nonlinear structure such as a catenary riser. However, this theoretically straight-forward approach is very demanding computationally and ways to limit the extent of nonlinear stochastic simulations are therefore sought. The usefulness of simpler methods such as regular wave analysis to improve understanding of the physical behaviour and to aid in concentrating the nonlinear simulations to where they are most useful, will be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document