Molecular characterization of Iranian patients with type 3 von Willebrand disease

Haemophilia ◽  
2009 ◽  
Vol 15 (5) ◽  
pp. 1058-1064 ◽  
Author(s):  
S. SHAHBAZI ◽  
R. MAHDIAN ◽  
F. A. ALA ◽  
J.-M. LAVERGNE ◽  
C. V. DENIS ◽  
...  
Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 2059-2066 ◽  
Author(s):  
Reinhard Schneppenheim ◽  
Ulrich Budde ◽  
Tobias Obser ◽  
Jacqueline Brassard ◽  
Kerstin Mainusch ◽  
...  

Abstract Dimerization defects of von Willebrand factor (vWF) protomers underlie von Willebrand disease (vWD) type 2A, subtype IID (vWD 2A/IID), and corresponding mutations have been identified at the 3′ end of the vWF gene in exon 52. This study identified and expressed 2 additional mutations in this region, a homozygous defect in a patient with vWD type 3 (C2754W) and a heterozygous frameshift mutation (8566delC) in a patient with vWD type 2A, subtype IIE. Both mutations involve cysteine residues that we propose are possibly essential for dimerization. To prove this hypothesis, transient recombinant expression of each of the 2 mutations introduced in the carboxy-terminal vWF fragment II and in the complete vWF complementary DNA, respectively, were carried out in COS-7 cells and compared with expression of vWD 2A/IID mutation C2773R and the wild-type (WT) sequence in COS-7 cells. Recombinant WT vWF fragment II assembled correctly into a dimer, whereas recombinant mutant fragments were monomeric. Homozygous expression of recombinant mutant full-length vWF resulted in additional dimers, probably through disulfide bonding at the amino-terminal multimerization site, whereas recombinant WT vWF correctly assembled into multimers. Coexpression of recombinant mutant and recombinant WT vWF reproduced the multimer patterns observed in heterozygous individuals. Our results suggest that a common defect of vWF biosynthesis—lack of vWF dimerization—may cause diverse types and subtypes of vWD. We also confirmed previous studies that found that disulfide bonding at the vWF amino-terminal is independent of dimerization at the vWF carboxy-terminal.


Haemophilia ◽  
2013 ◽  
Vol 19 (6) ◽  
pp. e344-e348 ◽  
Author(s):  
V. Jokela ◽  
R. Lassila ◽  
T. Szanto ◽  
L. Joutsi-Korhonen ◽  
E. Armstrong ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1184-1184
Author(s):  
Luciano Baronciani ◽  
Flora Peyvandi ◽  
Anne Goodeve ◽  
Reinhard Schneppenheim ◽  
Zahra Badiee ◽  
...  

Abstract Background: The type 3 Von Willebrand International RegistrieSInhibitor Prospective Study (3WINTERS-IPS) is a no-profit, investigator initiated, multicenter, European-Iranian observational, retrospective and prospective study on patients with diagnosis of type 3 VWD. Patients with type 3 von Willebrand Disease (VWD3) have markedly reduced levels of von Willebrand factor (VWF) and very severe bleeding phenotype. Due to the recessive inheritance pattern, VWD3 is by definition a rare bleeding disorder (1:Million) but its prevalence may increase in countries like Iran with consanguineous marriages. Aim: To identify the VWF genetic defects in a cohort of European and Iranian patients with previously diagnosed VWD3 enrolled into the 3WINTERS-IPS project. Methods: Patients classified locally as VWD3 were enrolled in the study following informed consent. 141 patients were from 9 different European countries and 119 patients were from the Islamic Republic of Iran. Plasma/buffy-coat samples were sent to expert labs to confirm patient's laboratory phenotype and to perform molecular analysis. PCR and Sanger sequencing/ next generation sequencing and multiplex-ligation dependent probe amplification were used in Hamburg, Sheffield and Milan to confirm previously identified variants or to seek previously unidentified variants. Results: DNA samples from 122 patients from Europe and 114 patients from Iran were analyzed at the molecular level. Of the 236 VWD3 patients under evaluation 24 are still in progress. Of the 212 fully evaluated patients 139 were homozygous (EU/IR=46/93) and 43 were compound heterozygous (EU/IR=36/7). In the remaining 30 patients no variants were identified in 19 samples (EU/IR=6/13) and only one variant was found in the remaining 11 cases (EU/IR=10/1). 135 (EU/IR=82/53) different gene defects were identified among the 375 (EU/IR=174/201) alleles found in this study. Of these 135 variants identified 51(EU/IR=22/29) were not reported on the www.ensembl.org database. The distribution of the different type of variants identified in the two populations is shown in the Figure. The two charts are showing quite similar percentages of the variants identified, with a main exception for the Small deletions and Small insertions. Only five variants are shared among the two populations. Three of these are the "hotspot" variants at the Arg codon, p.Arg1659* (EU/IR=9/8), p.Arg1853* (EU/IR=2/3) and p.Arg2535* (EU/IR=1/2). However, a missense variant , p.Cys275Ser (EU/IR=1/2) and a large deletion, delEx1_Ex5 (EU/IR=1/2) were also found in both populations. Fifteen variants were recurrent and were found in 154 alleles, whereas 49 variants were found only once in the heterozygous state (EU/IR=40/9) and 50 variants were found only twice, mainly in the homozygous state (EU/IR=25/25). Six large deletions were identified (delEx1_Ex3, delEx1_Ex5, delEx14_Ex15, delEx17, delEx35_Ex52 and delEx1_Ex52) and a duplication (dupEx1_Ex28), nevertheless 52 alleles with missense variants were identified (EU/IR=20/32). Discussion: As expected, the majority of the Iranian patients were found to be homozygous (Homozygous/Compound Heterozygous=93/7) reflecting a high rate of consanguinity, nevertheless half of the European patients were found to be homozygous (Homozygous/Compound Heterozygous=46/36). The European populations demonstrated a higher heterogeneity of variants with 82 different variants among the 175 mutated alleles vs 53 different variants among the 201 mutated alleles identified in the Iranian population. Nevertheless, a higher number of previously unreported variants was found in the Iranian population (29) vs the European one (22), probably due to bias of previous investigations performed in European patients. Figure Figure. Disclosures Peyvandi: Ablynx: Other: Member of Advisory Board, Speakers Bureau; Shire: Speakers Bureau; Roche: Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Novo Nordisk: Speakers Bureau; Sobi: Speakers Bureau; Sobi: Speakers Bureau; Novo Nordisk: Speakers Bureau; Kedrion: Consultancy; Novo Nordisk: Speakers Bureau; Octapharma US: Honoraria; Novo Nordisk: Speakers Bureau; Sobi: Speakers Bureau; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Kedrion: Consultancy; Novo Nordisk: Speakers Bureau; Kedrion: Consultancy; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Octapharma US: Honoraria; Shire: Speakers Bureau; Roche: Speakers Bureau; Kedrion: Consultancy; Kedrion: Consultancy; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Octapharma US: Honoraria; Octapharma US: Honoraria; Sobi: Speakers Bureau; Roche: Speakers Bureau; Octapharma US: Honoraria; Shire: Speakers Bureau; Sobi: Speakers Bureau; Roche: Speakers Bureau; Roche: Speakers Bureau; Shire: Speakers Bureau; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Shire: Speakers Bureau. Schneppenheim:CSL Behring: Consultancy; SHIRE: Consultancy. Berntorp:Octapharma: Consultancy; CSL Behring: Consultancy; Shire: Consultancy, Other: honoraria for lecturing . Eikenboom:CSL: Research Funding. Mannucci:Bayer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Kedrion: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Grifols: Speakers Bureau; Alexion: Speakers Bureau; Baxalta/Shire: Speakers Bureau; Novo Nordisk: Speakers Bureau. Mazzucconi:Baxalta-Shire: Consultancy, Speakers Bureau; Bayer: Consultancy, Speakers Bureau; Novartis,: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Novo Nordisk: Consultancy, Speakers Bureau; CSL Behring: Consultancy, Speakers Bureau. Oldenburg:Swedish Orphan Biovitrum: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Shire: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees; Grifols: Honoraria, Membership on an entity's Board of Directors or advisory committees; Biogen Idec: Honoraria, Membership on an entity's Board of Directors or advisory committees; Chugai: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Biotest: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Behring: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novo Nordisk: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Haemophilia ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 1035-1044
Author(s):  
Shariq Ahmed ◽  
Hamideh Yadegari ◽  
Arshi Naz ◽  
Arijit Biswas ◽  
Ulrich Budde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document