The Simulium damnosum species complex: phylogenetic analysis and molecular identification based upon mitochondrially encoded gene sequences

1995 ◽  
Vol 4 (2) ◽  
pp. 79-88 ◽  
Author(s):  
J. Tang ◽  
L. Toè ◽  
C. Back ◽  
P. A. Zimmerman ◽  
K. Pruess ◽  
...  
2021 ◽  
Vol 7 (3) ◽  
pp. 171
Author(s):  
Reannon L. Smith ◽  
Tom W. May ◽  
Jatinder Kaur ◽  
Tim I. Sawbridge ◽  
Ross C. Mann ◽  
...  

The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


1997 ◽  
Vol 83 (3) ◽  
pp. 417 ◽  
Author(s):  
Kimberly S. Reece ◽  
Mark E. Siddall ◽  
Eugene M. Burreson ◽  
John E. Graves

1992 ◽  
Vol 41 (4) ◽  
pp. 483 ◽  
Author(s):  
Timothy P. Friedlander ◽  
Jerome C. Regier ◽  
Charles Mitter

2002 ◽  
Vol 23 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Martı́n Garcı́a-Varela ◽  
Michael P Cummings ◽  
Gerardo Pérez-Ponce de León ◽  
Scott L Gardner ◽  
Juan P Laclette

2003 ◽  
Vol 126 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Christophe Noël ◽  
Corinne Peyronnet ◽  
Delphine Gerbod ◽  
Virginia P Edgcomb ◽  
Pilar Delgado-Viscogliosi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document