scholarly journals Reproductive competition favours solitary living while ecological constraints impose group-living in African striped mice

2010 ◽  
Vol 79 (3) ◽  
pp. 515-521 ◽  
Author(s):  
Carsten Schradin ◽  
Barbara König ◽  
Neville Pillay
2017 ◽  
Vol 114 (25) ◽  
pp. 6569-6574 ◽  
Author(s):  
Bernadette Wittwer ◽  
Abraham Hefetz ◽  
Tovit Simon ◽  
Li E. K. Murphy ◽  
Mark A. Elgar ◽  
...  

Social animals must communicate to define group membership and coordinate social organization. For social insects, communication is predominantly mediated through chemical signals, and as social complexity increases, so does the requirement for a greater diversity of signals. This relationship is particularly true for advanced eusocial insects, including ants, bees, and wasps, whose chemical communication systems have been well-characterized. However, we know surprisingly little about how these communication systems evolve during the transition between solitary and group living. Here, we demonstrate that the sensory systems associated with signal perception are evolutionarily labile. In particular, we show that differences in signal production and perception are tightly associated with changes in social behavior in halictid bees. Our results suggest that social species require a greater investment in communication than their solitary counterparts and that species that have reverted from eusociality to solitary living have repeatedly reduced investment in these potentially costly sensory perception systems.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lingzi Wang ◽  
Stephen J. Cornell ◽  
Michael P. Speed ◽  
Kevin Arbuckle

Abstract Background Animals use diverse antipredator mechanisms, including visual signalling of aversive chemical defence (aposematism). However, the initial evolution of aposematism poses the problem that the first aposematic individuals are conspicuous to predators who have not learned the significance of the warning colouration. In one scenario, aposematism evolves in group-living species and originally persisted due to kin selection or positive frequency-dependent selection in groups. Alternatively, group-living might evolve after aposematism because grouping can amplify the warning signal. However, our current understanding of the evolutionary dynamics of these traits is limited, leaving the relative merit of these scenarios unresolved. Results We used a phylogenetic comparative approach to estimate phenotypic evolutionary models to enable inferences regarding ancestral states and trait dynamics of grouping and aposematic colouration in a classic model system (caterpillars). We find strong support for aposematism at the root of the clade, and some (but weaker) support for ancestral solitary habits. Transition rates between aposematism and crypsis are generally higher than those between group-living and solitary-living, suggesting that colouration is more evolutionarily labile than aggregation. We also find that the transition from group-living to solitary-living states can only happen in aposematic lineage, suggesting that aposematism facilitates the evolution of solitary caterpillars, perhaps due to the additional protection offered when the benefits of grouping are lost. We also find that the high frequency of solitary, cryptic caterpillars is because this state is particularly stable, in that the transition rates moving towards this state are substantially higher than those moving away from it, favouring its accumulation in the clade over evolutionary time. Conclusions Our results provide new insights into the coevolution of colour and aggregation in caterpillars. We find support for an aposematic caterpillar at the root of this major clade, and for the signal augmentation hypothesis as an explanation of the evolution of aposematic, group-living caterpillars. We find that colouration is more labile than aggregation behaviour, but that the combination of solitary and cryptic habits is particularly stable. Finally, our results reveal that the transitions from group-living to solitary-living could be facilitated by aposematism, providing a new link between these well-studied traits.


2019 ◽  
Vol 15 (12) ◽  
pp. 20190529
Author(s):  
E. Inzani ◽  
H. H. Marshall ◽  
F. J. Thompson ◽  
G. Kalema-Zikusoka ◽  
M. A. Cant ◽  
...  

When breeding females compete for limited resources, the intensity of this reproductive conflict can determine whether the fitness benefits of current reproductive effort exceed the potential costs to survival and future fertility. In group-living species, reproductive competition can occur through post-natal competition among the offspring of co-breeding females. Spontaneous abortion could be a response to such competition, allowing females to curtail reproductive expenditure on offspring that are unlikely to survive and to conserve resources for future breeding opportunities. We tested this hypothesis using long-term data on banded mongooses, Mungos mungo , in which multiple females within a group give birth synchronously to a communal litter that is cared for by other group members. As predicted, abortions were more likely during dry periods when food is scarce, and in breeding attempts with more intense reproductive competition. Within breeding events, younger, lighter females carrying smaller fetuses were more likely to abort, particularly those that were also of lower rank. Our results suggest that abortion may be a means by which disadvantaged females conserve resources for future breeding attempts in more benign conditions, and highlight that female reproductive competition may be resolved long before the production of offspring.


2010 ◽  
Vol 6 (5) ◽  
pp. 620-622 ◽  
Author(s):  
Markus Port ◽  
Rufus A. Johnstone ◽  
Peter M. Kappeler

The evolution of group-living has fascinated but also puzzled researchers from the inception of behavioural ecology. We use a simple optimality approach to examine some of the costs and benefits of group-living in redfronted lemurs ( Eulemur fulvus rufus ). We show that dominant males profit from accepting subordinates within their groups, as the latter significantly decrease the likelihood that the group is taken over by intruders. This benefit is large enough to outweigh the costs of reproductive competition and may constitute the driving force behind the evolution of multi-male associations in this species.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 809
Author(s):  
Zhenglin Zhu ◽  
Yuting Tan ◽  
Siyu Xiao ◽  
Zhufen Guan ◽  
Wen Zhao ◽  
...  

The domestic silkworms, Bombyx mori, always live in groups and little is known of the outcomes of solitary living. We bred solitary silkworms and performed a comprehensive investigation of the difference between solitary and group-living silkworms. The results show that solitary silkworms had significantly lower weights than group-living counterparts. Moreover, solitary silkworms had faster movements under food luring or heat stress than the group-living ones, supported by extensive behavior experiments. These findings inferred that an increased agility resulted from solitary living. For an understanding of the molecular mechanism associated with solitary living, we performed integrated mRNA and miRNA (microRNA) sequencing of tissues for solitary and group-living silkworms. We identified 165 differently expressed genes (DEGs) and 6 differently expressed miRNAs between the solitary and group-living silkworms. Functional and pathway analyses indicated that these DEGs are associated with weight loss and agility increase. These findings compose a sketch depicting an association between the phenotypes and genes resulted from solitary living and refresh the understanding of solitary living and loneliness, which has an increased prevalence in our modern society.


2017 ◽  
Vol 13 (4) ◽  
pp. 20160961 ◽  
Author(s):  
C. Dubuc ◽  
S. English ◽  
N. Thavarajah ◽  
B. Dantzer ◽  
S. P. Sharp ◽  
...  

In group-living mammals, the eviction of subordinate females from breeding groups by dominants may serve to reduce feeding competition or to reduce breeding competition. Here, we combined both correlational and experimental approaches to investigate whether increases in food intake by dominant females reduces their tendency to evict subordinate females in wild meerkats ( Suricata suricatta ). We used 20 years of long-term data to examine the association between foraging success and eviction rate, and provisioned dominant females during the second half of their pregnancy, when they most commonly evict subordinates. We show that rather than reducing the tendency for dominants to evict subordinates, foraging success of dominant females is positively associated with the probability that pregnant dominant females will evict subordinate females and that experimental feeding increased their rates of eviction. Our results suggest that it is unlikely that the eviction of subordinate females serves to reduce feeding competition and that its principal function may be to reduce reproductive competition. The increase in eviction rates following experimental feeding also suggests that rather than feeding competition, energetic constraints may normally constrain eviction rates.


2016 ◽  
Author(s):  
James DJ Gilbert ◽  
Alice Wells ◽  
Stephen J Simpson

Costs and benefits of group living are a fundamental topic in behavioural ecology. Resource availability affects individuals' breeding prospects alone and in groups, as well as how reproduction is distributed within groups ("reproductive skew"). Here, we provide correlational evidence in facultatively social thrips that breeding resources are associated with (1) whether solitary or social living is favoured, and (2) the degree of ovarian skew.Dunatothrips aneurae(Thysanoptera, Phlaeothripidae) cooperatively build silk "domiciles" on Australian acacias, feeding exclusively from internal phyllode surfaces. Per capita productivity scaled differently with group size depending on domicile volume - females in small domiciles did better alone than in groups, whereas in large domiciles single and group-nesting females did equally well. Ovarian dissections revealed that in small domiciles some females were nonreproductive, indicating ovarian (i.e. reproductive) skew. Skew increased as domicile size decreased and group size increased. Breeders had smaller oocyte volume in smaller domiciles, especially those containing nonreproductives. These findings suggest group formation and reproductive skew inD. aneuraemay be influenced by reproductive competition for breeding resources. Nonreproductive females in small domiciles may be reproductively suppressed, subfertile, or waiting to reproduce. We speculate they may avoid eviction by contributing as "helpers" to domicile maintenance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Madeleine M. Ostwald ◽  
Romain A. Dahan ◽  
Zachary Shaffer ◽  
Jennifer H. Fewell

Kin selection theory has dominated our understanding of the evolution of group living. However, many animal groups form among non-relatives, which gain no indirect fitness benefits from cooperating with nestmates. In this study, we characterized the relatedness and inter-nest migration behavior of the facultatively social carpenter bee, Xylocopa sonorina. Nesting constraints due to costly nest construction in this species give rise to intense intraspecific competition over access to existing nests. We used mark-recapture techniques to characterize patterns of dispersal and nest relocation within a nesting aggregation of spatially clustered nests. Two-thirds of bees relocated at least once during the reproductive season, likely to seek reproductive opportunities in another nest. This fluid nest membership creates opportunities for association among non-relatives. To assess the effects of this dynamic nesting behavior on group relatedness, we used microsatellite analysis to estimate relative relatedness within and between nests in the aggregation. We found that relatedness was variable across sampling years, but that in many cases nestmates were no more related to one another than they were to non-nestmate bees in the population. Together, these results suggest that group composition in X. sonorina may result from strategies to maximize direct fitness. This study supports the hypothesis that factors beyond kinship, such as ecological constraints, are likely to drive group formation in this species.


Sign in / Sign up

Export Citation Format

Share Document