cystic kidney disease
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 70)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 884
Author(s):  
Sonja Djudjaj ◽  
Panagiotis Kavvadas ◽  
Niki Prakoura ◽  
Roman D. Bülow ◽  
Tiffany Migeon ◽  
...  

Background: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation of tubular epithelial cells, cellular processes known to be regulated by Notch signaling. Methods: We found increased Notch3 expression in human PKD and renal cell carcinoma biopsies. To obtain insight into the underlying mechanisms and the functional consequences of this abnormal expression, we developed a transgenic mouse model with conditional overexpression of the intracellular Notch3 (ICN3) domain specifically in renal tubules. We evaluated the alterations in renal function (creatininemia, BUN) and structure (cysts, fibrosis, inflammation) and measured the expression of several genes involved in Notch signaling and the mechanisms of inflammation, proliferation, dedifferentiation, fibrosis, injury, apoptosis and regeneration. Results: After one month of ICN3 overexpression, kidneys were larger with tubules grossly enlarged in diameter, with cell hypertrophy and hyperplasia, exclusively in the outer stripe of the outer medulla. After three months, mice developed numerous cysts in proximal and distal tubules. The cysts had variable sizes and were lined with a single- or multilayered, flattened, cuboid or columnar epithelium. This resulted in epithelial hyperplasia, which was observed as protrusions into the cystic lumen in some of the renal cysts. The pre-cystic and cystic epithelium showed increased expression of cytoskeletal filaments and markers of epithelial injury and dedifferentiation. Additionally, the epithelium showed increased proliferation with an aberrant orientation of the mitotic spindle. These phenotypic tubular alterations led to progressive interstitial inflammation and fibrosis. Conclusions: In summary, Notch3 signaling promoted tubular cell proliferation, the alignment of cell division, dedifferentiation and hyperplasia, leading to cystic kidney diseases and pre-neoplastic lesions.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009711
Author(s):  
Abigail O. Smith ◽  
Julie A. Jonassen ◽  
Kenley M. Preval ◽  
Roger J. Davis ◽  
Gregory J. Pazour

Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people. It primarily is caused by mutations in the transmembrane proteins polycystin-1 (Pkd1) and polycystin-2 (Pkd2). The most proximal effects of Pkd mutations leading to cyst formation are not known, but pro-proliferative signaling must be involved for the tubule epithelial cells to increase in number over time. The c-Jun N-terminal kinase (JNK) pathway promotes proliferation and is activated in acute and chronic kidney diseases. Using a mouse model of cystic kidney disease caused by Pkd2 loss, we observe JNK activation in cystic kidneys and observe increased nuclear phospho c-Jun in cystic epithelium. Genetic removal of Jnk1 and Jnk2 suppresses the nuclear accumulation of phospho c-Jun, reduces proliferation and reduces the severity of cystic disease. While Jnk1 and Jnk2 are thought to have largely overlapping functions, we find that Jnk1 loss is nearly as effective as the double loss of Jnk1 and Jnk2. Jnk pathway inhibitors are in development for neurodegeneration, cancer, and fibrotic diseases. Our work suggests that the JNK pathway should be explored as a therapeutic target for ADPKD.


Author(s):  
Chunyan Hu ◽  
Katherine Beebe ◽  
Edgar J Hernandez ◽  
Jose M Lazaro-Guevara ◽  
Monica P Revelo ◽  
...  

Ift88 gene mutations cause primary cilia loss and polycystic kidney disease (PKD) in mice. Nephron Ift88 knockout (KO) at 2 months postnatal does not affect renal histology at 4 months postnatal and causes PKD only in males by 11 months postnatal. To identify factors associated with PKD development, kidneys from 4-month-old male and female control and Ift88 KO mice underwent transcriptomic, proteomic, western, metabolomic and lipidomic analysis. mRNAs involved in extracellular matrix (ECM) synthesis and degradation were selectively upregulated in male KO mice. Proteomic analysis was insufficiently sensitive to detect most ECM components, while western analysis paradoxically revealed reduced fibronectin and collagen I in male KO mice. Only male KO mice upregulated mRNAs encoding fibrinogen subunits and receptors for VEGF and PDGF; Per2, Per3 and Nrld2 clock mRNAs were selectively decreased in male KO mice. Proteomic, metabolomic and lipidomic analysis detected a relative (vs same sex control) decrease in factors involved in fatty acid ß-oxidation in female KO, while increased or unchanged levels in male KO, mice including medium chain acyl-CoA dehydrogenase, 3-hydroxybutyrate, and acylcarnitine. Three putative mRNA biomarkers of cystogenesis in male Ift88 KO mice (similar control levels between sexes and uniquely altered by KO in males) were identified, including high levels (Fga and Sdf2l1) and low levels (Banp) in male KO mice. These findings suggest that relative alterations in renal ECM metabolism, fatty acid ß-oxidation, and other pathways precede cystogenesis in Ift88 KO mice. In addition, potential novel biomarkers of cystogenesis in Ift88 KO mice have been identified.


2021 ◽  
pp. 1-7
Author(s):  
Ryohei Miyamoto ◽  
Akinari Sekine ◽  
Takuya Fujimaru ◽  
Tatsuya Suwabe ◽  
Hiroki Mizuno ◽  
...  

<b><i>Background:</i></b> Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cystic kidney disease and is well known to have extrarenal complications. Cardiovascular complications are of particular clinical relevance because of their morbidity and mortality; however, unclear is why they occur so frequently in patients with ADPKD and whether they are related to the genotypes. <b><i>Methods:</i></b> We extracted and retrospectively analyzed clinical data on patients with ADPKD who underwent echocardiography and whose genotype was confirmed by genetic testing between April 2016 and December 2020. We used next-generation sequencing to compare cardiac function, structural data, and the presence of cardiac valvular disease in patients with 1 of 3 genotypes: <i>PKD1</i>, <i>PKD2</i>, and non-<i>PKD1</i>, <i>2</i>. <b><i>Results:</i></b> This retrospective study included 65 patients with ADPKD. Patients were divided into 3 groups: <i>PKD1</i>, <i>n</i> = 32; <i>PKD2</i>, <i>n</i> = 12; and non-<i>PKD1</i>, <i>2</i>, <i>n</i> = 21. The prevalence of mitral regurgitation (MR) was significantly higher in the <i>PKD1</i> group than in the <i>PKD2</i> and non-<i>PKD1</i>, <i>2</i> group (46.9% vs. 8.3% vs. 19.0%, respectively; <i>p</i> = 0.02). In contrast, no significant difference was found for other cardiac valve complications. <b><i>Conclusion:</i></b> This study found a significantly higher prevalence of MR in patients with the <i>PKD1</i> genotype than in those with the <i>PKD2</i> or non-<i>PKD1</i>, <i>2</i> genotypes. Physicians may need to perform echocardiography earlier and more frequently in patients with ADPKD and the <i>PKD1</i> genotype and to control fluid volume and blood pressure more strictly in these patients to prevent future cardiac events.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1762
Author(s):  
Shabarni Gupta ◽  
Justyna E. Ozimek-Kulik ◽  
Jacqueline Kathleen Phillips

The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.


2021 ◽  
Author(s):  
Joel Hernandez ◽  
Xichi Wang ◽  
Miriam Vazquez-Segoviano ◽  
Maria Fernanda Sobral-Reyes ◽  
Alejandro Moran-Horowich ◽  
...  

The lack of animal models for certain human diseases precludes our understanding of disease mechanisms and our ability to test new therapies in vivo. Here we generated kidney organoids from Tuberous Sclerosis Complex (TSC) patient-derived-hiPSCs to recapitulate a rare kidney tumor called angiomylipoma (AML). Organoids derived from TSC2-/- hiPSCs but not from isogenic TSC2+/- or TSC2+/+ hiPSCs shared a common transcriptional signature and a myomelanocytic cell phenotype with kidney AMLs, and developed epithelial cysts, replicating two major TSC-associated kidney lesions driven by genetic mechanisms that cannot be robustly and consistently recapitulated with transgenic mice. Transplantation of multiple TSC2-/- kidney organoids into the kidneys of immunodeficient rats allowed us to recapitulate AML and cystic kidney disease in vivo, in a scalable fashion and with fidelity, and to test the efficiency of rapamycin-loaded nanoparticles as a novel approach to ablate AMLs by inducing apoptosis triggered by mTOR-inhibition. Collectively, these methods represent a novel tissue-bioengineering strategy for rare disease modeling in vivo.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106770118
Author(s):  
Maike Getwan ◽  
Anselm Hoppmann ◽  
Pascal Schlosser ◽  
Kelli Grand ◽  
Weiting Song ◽  
...  

Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.


Author(s):  
Antoine Jean Zgheib ◽  
Elias Gerges Mansour ◽  
Joe Nohra Nohra

Abstract Wunderlich syndrome, or spontaneous renal hemorrhage (SRH), is a rare condition encountered in patients undergoing chronic hemodialysis (HD) usually attributed to acquired cystic kidney disease (ACKD) among other causes. In the literature, colonoscopy is associated with splenic injuries, and renal hemorrhage has not been previously described. Management can range from conservative treatment to angiographic embolization or exploration and nephrectomy. Here we report an unusual case of a 54-year-old woman HD patient who presented with SRH within a few days of colonoscopy. The reason of SRH was rupture of an ACKD cyst. We assumed that colonoscopy was a provoking factor and elaborated hypotheses for its etiopathogenesis. The patient underwent successful left nephrectomy. The importance of this case lies in the fact that colonoscopy is not always an innocent procedure in HD patients, and could be complicated by renal cyst hemorrhage.


Author(s):  
Kelly M. Schiabor Barrett ◽  
Alexandre Bolze ◽  
Yunyun Ni ◽  
Simon White ◽  
Magnus Isaksson ◽  
...  

Abstract Purpose To identify conditions that are candidates for population genetic screening based on population prevalence, penetrance of rare variants, and actionability. Methods We analyzed exome and medical record data from >220,000 participants across two large population health cohorts with different demographics. We performed a gene-based collapsing analysis of rare variants to identify genes significantly associated with disease status. Results We identify 74 statistically significant gene–disease associations across 27 genes. Seven of these conditions have a positive predictive value (PPV) of at least 30% in both cohorts. Three are already used in population screening programs (BRCA1, BRCA2, LDLR), and we also identify four new candidates for population screening: GCK with diabetes mellitus, HBB with β-thalassemia minor and intermedia, PKD1 with cystic kidney disease, and MIP with cataracts. Importantly, the associations are actionable in that early genetic screening of each of these conditions is expected to improve outcomes. Conclusion We identify seven genetic conditions where rare variation appears appropriate to assess in population screening, four of which are not yet used in screening programs. The addition of GCK, HBB, PKD1, and MIP rare variants into genetic screening programs would reach an additional 0.21% of participants with actionable disease risk, depending on the population.


Sign in / Sign up

Export Citation Format

Share Document