Power spectral distribution of the masseter electromyogram from surface electrodes

1976 ◽  
Vol 3 (4) ◽  
pp. 333-339 ◽  
Author(s):  
A. J. DUXBURY ◽  
D. F. HUGHES ◽  
D. E. CLARK
2021 ◽  
Author(s):  
Marco Aceves-Fernandez

Abstract Dealing with electroencephalogram signals (EEG) are often not easy. The lack of predicability and complexity of such non-stationary, noisy and high dimensional signals is challenging. Cross Recurrence Plots (CRP) have been used extensively to deal with detecting subtle changes in signals even when the noise is embedded in the signal. In this contribution, a total of 121 children performed visual attention experiments and a proposed methodology using CRP and a Welch Power Spectral Distribution have been used to classify then between those who have ADHD and the control group. Additional tools were presented to determine to which extent the proposed methodology is able to classify accurately and avoid misclassifications, thus demonstrating that this methodology is feasible to classify EEG signals from subjects with ADHD. Lastly, the results were compared with a baseline machine learning method to prove experimentally that this methodology is consistent and the results repeatable.


Author(s):  
Hongduo Zhao ◽  
Mengyuan Zeng ◽  
Hui Chen ◽  
Jianming Ling ◽  
Difei Wu

Prestress force loss is crucial to the structural performance of cross-tensioned concrete pavement (CTCP). Severe loss in prestress force will reduce the constricting-cracking capacity of the CTCP, resulting in damage with load and temperature applied. Vibration-based methods are commonly used in prestress force monitoring, but few relative studies are reported into CTCP and the relationship between prestress force and CTCP vibration is still unclear. The purpose of this paper is to investigate the effect of prestress force on CTCP vibration. The vibration characteristics of CTCP subjected to different prestress forces were studied through field testing and finite element (FE) analysis. Impulse load was applied as excitation at the anchorage zone and dynamic responses were measured in the time domain. A signal processing method was employed to obtain short-time power spectral from original vibration signals, which was utilized to extract vibration characteristics in time and frequency. As shown in both the field testing and the FE analysis, the prestress force has a more significant effect on frequency spectral distribution, rather than the dominant frequency. Integrated frequency is proved to be a reliable index for describing frequency spectral distribution and has a good correlation with prestress force, which suggests it can be used to reflect the change in prestress force. Overall, these findings indicate that vibration testing has potential in prestress force monitoring in CTCP, though the practicality of this method requires further demonstration.


Icarus ◽  
2009 ◽  
Vol 202 (1) ◽  
pp. 181-196 ◽  
Author(s):  
N. Barrado-Izagirre ◽  
S. Pérez-Hoyos ◽  
A. Sánchez-Lavega

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jonas Duun-Henriksen ◽  
Troels Wesenberg Kjaer ◽  
David Looney ◽  
Mary Doreen Atkins ◽  
Jens Ahm Sørensen ◽  
...  

Purpose. We provide a comprehensive verification of a new subcutaneous EEG recording device which promises robust and unobtrusive measurements over ultra-long time periods. The approach is evaluated against a state-of-the-art surface EEG electrode technology.Materials and Methods. An electrode powered by an inductive link was subcutaneously implanted on five subjects. Surface electrodes were placed at sites corresponding to the subcutaneous electrodes, and the EEG signals were evaluated with both quantitative (power spectral density and coherence analysis) and qualitative (blinded subjective scoring by neurophysiologists) analysis.Results. The power spectral density and coherence analysis were very similar during measurements of resting EEG. The scoring by neurophysiologists showed a higher EEG quality for the implanted system for different subject states (eyes open and eyes closed). This was most likely due to higher amplitude of the subcutaneous signals. During periods with artifacts, such as chewing, blinking, and eye movement, the two systems performed equally well.Conclusions. Subcutaneous measurements of EEG with the test device showed high quality as measured by both quantitative and more subjective qualitative methods. The signal might be superior to surface EEG in some aspects and provides a method of ultra-long term EEG recording in situations where this is required and where a small number of EEG electrodes are sufficient.


Sign in / Sign up

Export Citation Format

Share Document