scholarly journals Comparison of 13CO line and far-infrared continuum emission as a diagnostic of dust and molecular gas physical conditions - I. Motivation and modelling

2007 ◽  
Vol 375 (1) ◽  
pp. 278-300 ◽  
Author(s):  
W. F. Wall
2018 ◽  
Vol 609 ◽  
pp. A75 ◽  
Author(s):  
N. Falstad ◽  
S. Aalto ◽  
J. G. Mangum ◽  
F. Costagliola ◽  
J. S. Gallagher ◽  
...  

Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2–1 and J = 6–5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s-1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.


2014 ◽  
Vol 10 (S309) ◽  
pp. 61-64
Author(s):  
C. Kevin Xu

AbstractWe present results of ALMA (Cycle-0) observations of the CO (6-5) line emission and the 435μm continuum of two nearby luminous infrared galaxies (LIRGs) NGC 34 (a major merger with an AGN) and NGC 1614 (a minor merger with a circum-nuclear starburst). Using receivers in the highest frequency ALMA band available (Band-9), these observations achieved the best angular resolutions (∼0″.25) for ALMA Cycle-0 observations and resolved for the first time distributions of warm dense molecular gas (n > 105 cm−3, T > 100 K) in LIRGs with spatial resolutions better than 100 pc. Our ALMA data show a very tight correlation between the CO (6-5) line emission and the 435μm dust continuum emission, suggesting the warm dense molecular gas dominates the ISM in the central kpc of LIRGs, and gas heating and dust heating in the warm dense gas cores are strongly coupled. On the other hand, we saw very different spatial distributions and kinematic properties of warm dense gas in the two LIRGs, indicating that physical conditions in the ISM can be very different in different LIRGs.


2010 ◽  
Vol 6 (S277) ◽  
pp. 55-58
Author(s):  
M. Bureau ◽  
T. A. Davis ◽  
K. Alatalo ◽  
A. F. Crocker ◽  
L. Blitz ◽  
...  

AbstractThe molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.


2015 ◽  
Vol 12 (S316) ◽  
pp. 153-154
Author(s):  
Randolf Klein ◽  
Leslie W. Looney ◽  
Erin Cox ◽  
Christian Fischer ◽  
Christof Iserlohe ◽  
...  

AbstractThe Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.


2019 ◽  
Vol 628 ◽  
pp. A113 ◽  
Author(s):  
M.-Y. Lee ◽  
S. C. Madden ◽  
F. Le Petit ◽  
A. Gusdorf ◽  
P. Lesaffre ◽  
...  

With an aim of probing the physical conditions and excitation mechanisms of warm molecular gas in individual star-forming regions, we performed Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of 30 Doradus in the Large Magellanic Cloud. In our FTS observations, important far-infrared (FIR) cooling lines in the interstellar medium, including CO J = 4–3 to J = 13–12, [C I] 370 μm, and [N II] 205 μm, were clearly detected. In combination with ground-based CO J = 1–0 and J = 3–2 data, we then constructed CO spectral line energy distributions (SLEDs) on ~10 pc scales over a ~60 pc × 60 pc area and found that the shape of the observed CO SLEDs considerably changes across 30 Doradus. For example, the peak transition Jp varies from J = 6–5 to J = 10–9, while the slope characterized by the high-to-intermediate J ratio α ranges from ~0.4 to ~1.8. To examine the source(s) of these variations in CO transitions, we analyzed the CO observations, along with [C II] 158 μm, [C I] 370 μm, [O I] 145 μm, H2 0–0 S(3), and FIR luminosity data, using state-of-the-art models of photodissociation regions and shocks. Our detailed modeling showed that the observed CO emission likely originates from highly compressed (thermal pressure P∕kB ~ 107–109 K cm−3) clumps on ~0.7–2 pc scales, which could be produced by either ultraviolet (UV) photons (UV radiation field GUV ~ 103–105 Mathis fields) or low-velocity C-type shocks (pre-shock medium density npre ~ 104–106 cm−3 and shock velocity vs ~ 5–10 km s−1). Considering the stellar content in 30 Doradus, however, we tentatively excluded the stellar origin of CO excitation and concluded that low-velocity shocks driven by kiloparsec-scale processes (e.g., interaction between the Milky Way and the Magellanic Clouds) are likely the dominant source of heating for CO. The shocked CO-bright medium was then found to be warm (temperature T ~ 100–500 K) and surrounded by a UV-regulated low-pressure component (P∕kB ~ a few (104 –105) K cm−3) that is bright in [C II] 158 μm, [C I] 370 μm, [O I] 145 μm, and FIR dust continuum emission.


1989 ◽  
Vol 131 ◽  
pp. 216-216
Author(s):  
S. R. Pottasch ◽  
A. A. Zijlstra ◽  
N. Ukita ◽  
A. Manchado ◽  
M. Ratag

The question of whether M1-78 is a PN or a compact H II region is discussed. We have obtained new high resolution radio continuum maps, optical spectra and CO maps. Arguments for it being a PN include spectral information, far infrared continuum emission, and radio morphology. It is the strongest CO emitting PN known. Its abundances are peculiar: high helium and very low oxygen and nitrogen abundances. If it is a PN it must be within 4 kpc, but 21-cm absorption measurements indicate that it may be further away.


2020 ◽  
Vol 645 ◽  
pp. A33
Author(s):  
M. Bischetti ◽  
C. Feruglio ◽  
E. Piconcelli ◽  
F. Duras ◽  
M. Pérez-Torres ◽  
...  

Context. Sources at the brightest end of the quasi-stellar object (QSO) luminosity function, during the peak epoch in the history of star formation and black hole accretion (z ∼ 2−4, often referred to as “Cosmic noon”) are privileged sites to study the cycle of feeding & feedback processes in massive galaxies. Aims. We aim to perform the first systematic study of cold gas properties in the most luminous QSOs, by characterising their host-galaxies and environment. These targets exhibit indeed widespread evidence of outflows at nuclear and galactic scales. Methods. We analyse ALMA, NOEMA and JVLA observations of the far-infrared continuum, CO and [CII] emission lines in eight QSOs (bolometric luminosity LBol ≳ 3 × 1047 erg s−1) from the WISE-SDSS selected hyper-luminous (WISSH) QSOs sample at z ∼ 2.4−4.7. Results. We report a 100% emission line detection rate and a 80% detection rate in continuum emission, and we find CO emission to be consistent with the steepest CO ladders observed so far. Sub-millimetre data reveal presence of (one or more) bright companion galaxies around ∼80% of WISSH QSOs, at projected distances of ∼6−130 kpc. We observe a variety of sizes for the molecular gas reservoirs (∼1.7−10 kpc), mostly associated with rotating disks with disturbed kinematics. WISSH QSOs typically show lower CO luminosity and higher star formation efficiency than infrared matched, z ∼ 0−3 main-sequence galaxies, implying that, given the observed SFR ∼170−1100 M⊙ yr−1, molecular gas is converted into stars in ≲50 Myr. Most targets show extreme dynamical to black-hole mass ratios Mdyn/MBH ∼ 3−10, two orders of magnitude smaller than local relations. The molecular gas fraction in the host-galaxies of WISSH is lower by a factor of ∼10−100 than in star forming galaxies with similar M*. Conclusions. Our analysis reveals that hyper-luminous QSOs at Cosmic noon undergo an intense growth phase of both the central super-massive black hole and of the host-galaxy. These systems pinpoint the high-density sites where giant galaxies assemble, where we show that mergers play a major role in the build-up of the final host-galaxy mass. We suggest that the observed low molecular gas fraction and short depletion timescale are due to AGN feedback, whose presence is indicated by fast AGN-driven ionised outflows in all our targets.


1987 ◽  
Vol 321 ◽  
pp. 755 ◽  
Author(s):  
D. F. Lester ◽  
M. Joy ◽  
P. M. Harvey ◽  
H. B., Jr. Ellis ◽  
P. S. Parmar

Sign in / Sign up

Export Citation Format

Share Document