scholarly journals High mass-loss asymptotic giant branch stars detected by the Midcourse Space Experiment in the ‘intermediate’ and ‘outer’ Galactic bulge

2007 ◽  
Vol 381 (3) ◽  
pp. 1219-1234 ◽  
Author(s):  
D. K. Ojha ◽  
A. Tej ◽  
M. Schultheis ◽  
A. Omont ◽  
F. Schuller
2016 ◽  
Vol 822 (2) ◽  
pp. 73 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

2014 ◽  
Vol 790 (1) ◽  
pp. 22 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2020 ◽  
Vol 639 ◽  
pp. A116
Author(s):  
Ming Yang ◽  
Alceste Z. Bonanos ◽  
Bi-Wei Jiang ◽  
Jian Gao ◽  
Panagiotis Gavras ◽  
...  

We present the most comprehensive red supergiant (RSG) sample for the Small Magellanic Cloud (SMC) to date, including 1239 RSG candidates. The initial sample was derived based on a source catalog for the SMC with conservative ranking. Additional spectroscopic RSGs were retrieved from the literature, and RSG candidates were selected based on the inspection of Gaia and 2MASS color-magnitude diagrams (CMDs). We estimate that there are in total ∼1800 or more RSGs in the SMC. We purify the sample by studying the infrared CMDs and the variability of the objects, though there is still an ambiguity between asymptotic giant branch stars (AGBs) and RSGs at the red end of our sample. One heavily obscured target was identified based on multiple near-IR and mid-IR (MIR) CMDs. The investigation of color-color diagrams shows that there are fewer RSGs candidates (∼4%) showing PAH emission features compared to the Milky Way and LMC (∼15%). The MIR variability of RSG sample increases with luminosity. We separate the RSG sample into two subsamples (risky and safe), and identify one M5e AGB star in the risky subsample based on simultaneous inspection of variabilities, luminosities, and colors. The degeneracy of mass loss rate (MLR), variability, and luminosity of the RSG sample is discussed, indicating that most of the targets with high variability are also the bright ones with high MLR. Some targets show excessive dust emission, which may be related to previous episodic mass loss events. We also roughly estimate the total gas and dust budget produced by entire RSG population as ∼1.9−1.1+2.4 × 10−6 M⊙ yr−1 in the most conservative case, according to the derived MLR from IRAC1–IRAC4 color. Based on the MIST models, we derive a linear relation between Teff and observed J − KS color with reddening correction for the RSG sample. By using a constant bolometric correction and this relation, the Geneva evolutionary model is compared with our RSG sample, showing a good agreement and a lower initial mass limit of ∼7 M⊙ for the RSG population. Finally, we compare the RSG sample in the SMC and the LMC. Despite the incompleteness of LMC sample in the faint end, the result indicates that the LMC sample always shows redder color (except for the IRAC1–IRAC2 and WISE1–WISE2 colors due to CO absorption) and higher variability than the SMC sample, which is likely due to a positive relation between MLR, variability and the metallicity.


1993 ◽  
Vol 155 ◽  
pp. 319-319
Author(s):  
Neill Reid

Asymptotic giant branch stars are the immediate precursors to the planetary nebula stage of stellar evolution. It is clear that the latter stages of a stars life on the AGB are accompanied by either continuous or episodic mass-loss, with the final convulsion being the ejection of the envelope (the future planetary shell), the gradual exposure of the bare CO core and the rapid horizontal evolution to the blue in the H-R diagram. Thus, the structure of the planetary nebula luminosity function, particularly at the higher luminosities (although this phase is extremely rapid), is intimately tied to the luminosity function of the AGB.


2000 ◽  
Vol 177 ◽  
pp. 313-324
Author(s):  
Takashi Tsuji

We examine whether dust forms in the photospheres of carbon-rich stars by referring to the case of red and brown dwarfs for which some observational clues on dust formation are now known. Dust may form in the photospheres of dwarf carbon stars and produce significant effects on both their structure and spectra. In carbon-rich asymptotic giant branch stars, dust probably forms in the photosphere, if not in the circumstellar envelope, and radiation pressure on dust is sufficient to expel the matter directly from the photosphere. This fact may play some role in mass-loss from cool luminous stars in general, including non-pulsating stars for which no successful mechanism of mass-loss was known.


2002 ◽  
Vol 19 (4) ◽  
pp. 515-526 ◽  
Author(s):  
A. I. Karakas ◽  
J. C. Lattanzio ◽  
O. R. Pols

AbstractWe present new evolutionary sequences for low and intermediate mass stars (1−6M⊙) for three different metallicities, Z = 0.02, 0.008, and 0.004. We evolve the models from the pre-main sequence to the thermally-pulsing asymptotic giant branch phase. We have two sequences of models for each mass, one which includes mass loss and one without mass loss. Typically 20 or more pulses have been followed for each model, allowing us to calculate the third dredge-up parameter for each case. Using the results from this large and homogeneous set of models, we present an approximate fit for the core mass at the first thermal pulse, Mc1, as well as for the third dredge-up efficiency parameter, λ, and the core mass at the first dredge-up episode, Mcmin, as a function of metallicity and total mass. We also examine the effect of a reduced envelope mass on the value of λ.


Sign in / Sign up

Export Citation Format

Share Document