scholarly journals Photometric redshifts for the Dark Energy Survey and VISTA and implications for large-scale structure

2008 ◽  
Vol 386 (3) ◽  
pp. 1219-1233 ◽  
Author(s):  
Manda Banerji ◽  
Filipe B. Abdalla ◽  
Ofer Lahav ◽  
Huan Lin
2020 ◽  
Vol 500 (1) ◽  
pp. 859-870
Author(s):  
Ben Moews ◽  
Morgan A Schmitz ◽  
Andrew J Lawler ◽  
Joe Zuntz ◽  
Alex I Malz ◽  
...  

ABSTRACT Cosmic voids and their corresponding redshift-projected mass densities, known as troughs, play an important role in our attempt to model the large-scale structure of the Universe. Understanding these structures enables us to compare the standard model with alternative cosmologies, constrain the dark energy equation of state, and distinguish between different gravitational theories. In this paper, we extend the subspace-constrained mean shift algorithm, a recently introduced method to estimate density ridges, and apply it to 2D weak lensing mass density maps from the Dark Energy Survey Y1 data release to identify curvilinear filamentary structures. We compare the obtained ridges with previous approaches to extract trough structure in the same data, and apply curvelets as an alternative wavelet-based method to constrain densities. We then invoke the Wasserstein distance between noisy and noiseless simulations to validate the denoising capabilities of our method. Our results demonstrate the viability of ridge estimation as a precursor for denoising weak lensing observables to recover the large-scale structure, paving the way for a more versatile and effective search for troughs.


2013 ◽  
Vol 429 (3) ◽  
pp. 1902-1912 ◽  
Author(s):  
Gregory B. Poole ◽  
Chris Blake ◽  
David Parkinson ◽  
Sarah Brough ◽  
Matthew Colless ◽  
...  

2019 ◽  
Vol 487 (2) ◽  
pp. 2836-2852 ◽  
Author(s):  
G Pollina ◽  
N Hamaus ◽  
K Paech ◽  
K Dolag ◽  
J Weller ◽  
...  

Abstract Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of mock data we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing data obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.


2005 ◽  
Vol 216 ◽  
pp. 373-380
Author(s):  
Marguerite Pierre

We outline the main arguments in favor of cosmological X-ray surveys of galaxy clusters. We summarize recent advances in our understanding of cluster physics. After a short review of past surveys, we present the scientific motivations of the XMM Large Scale Structure survey. We further illustrate how such a survey can help constrain the nature of the dark energy as well as cluster scaling law evolution, i.e. non-gravitational physics.


2019 ◽  
Vol 488 (3) ◽  
pp. 4389-4399 ◽  
Author(s):  
D Gruen ◽  
Y Zhang ◽  
A Palmese ◽  
B Yanny ◽  
V Busti ◽  
...  

Abstract We study the effect of diffuse intracluster light on the critical surface mass density estimated from photometric redshifts of lensing source galaxies, and the resulting bias in a weak lensing measurement of galaxy cluster mass. Under conservative assumptions, we find the bias to be negligible for imaging surveys like the Dark Energy Survey with a recommended scale cut of ≥200 kpc distance from cluster centres. For significantly deeper lensing source galaxy catalogues from present and future surveys like the Large Synoptic Survey Telescope program, more conservative scale and source magnitude cuts or a correction of the effect may be necessary to achieve percent level lensing measurement accuracy, especially at the massive end of the cluster population.


2014 ◽  
Vol 89 (10) ◽  
Author(s):  
Amol Upadhye ◽  
Rahul Biswas ◽  
Adrian Pope ◽  
Katrin Heitmann ◽  
Salman Habib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document