scholarly journals Electron-positron energy deposition rate from neutrino pair annihilation in the equatorial plane of rapidly rotating neutron and quark stars

2010 ◽  
Vol 402 (3) ◽  
pp. 1714-1728 ◽  
Author(s):  
Z. Kovács ◽  
K. S. Cheng ◽  
T. Harko
2013 ◽  
Vol 22 (02) ◽  
pp. 1350008 ◽  
Author(s):  
RITAM MALLICK ◽  
ABHIJIT BHATTACHARYYA ◽  
SANJAY K. GHOSH ◽  
SIBAJI RAHA

The estimate of the energy deposition rate (EDR) for neutrino pair annihilation has been carried out. The EDR for the neutrinos coming from the equatorial plane of a rotating neutron star is calculated along the rotation axis using the Cook–Shapiro–Teukolsky metric. The neutrino trajectories and hence the neutrinos emitted from the disk are affected by the redshift due to disk rotation and gravitation. The EDR is very sensitive to the value of the temperature and its variation along the disk. The rotation of the star has a negative effect on the EDR; it decreases with increase in rotational velocity.


2011 ◽  
Vol 20 (10) ◽  
pp. 1975-1978 ◽  
Author(s):  
SHIGEHIRO NAGATAKI

I have developed two-dimensional general relativistic magnetohydrodynamic (GRMHD) code. I have performed numerical simulations of collapsars using these codes and realistic progenitor models. In the GRMHD simulation, it is shown that a jet is launched from the center of the progenitor. We also performed two-dimensional hydrodynamic simulations in the context of collapsar model to investigate the explosive nucleosynthesis happened there. It is found that the amount of 56 Ni is very sensitive to the energy deposition rate. This result means that the amount of synthesized 56 Ni can be little even if the total explosion energy is as large as 1052 erg. Thus, some GRBs can associate with faint supernovae. Thus we consider it is quite natural to detect no underlying supernova in some X-ray afterglows.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
G. Lambiase ◽  
L. Mastrototaro

AbstractQuintessence fields, introduced to explain the speed-up of the Universe, might affect the geometry of spacetime surrounding black holes, as compared to the standard Schwarzschild and Kerr geometries. In this framework, we study the neutrino pairs annihilation into electron-positron pairs ($$\nu {\bar{\nu }}\rightarrow e^-e^+$$ ν ν ¯ → e - e + ) near the surface of a neutron star, focusing, in particular, on the Schwarzschild-like geometry in presence of quintessence fields. The effect of the latter is to increase the photon-sphere radius ($$R_{ph}$$ R ph ), increasing in such a way the maximum energy deposition rate near to $$R_{ph}$$ R ph . The rate turns out to be several orders of magnitude greater than the rate computed in the framework of General Relativity. These results might provide a rising in the GRBs energy emitted from a close binary neutron star system and might be used to constraints the parameters of the quintessence model. Finally we theoretically study the effects of rotation on the neutrino energy deposition.


2007 ◽  
Vol 25 (11) ◽  
pp. 2393-2403 ◽  
Author(s):  
H. Fujiwara ◽  
R. Kataoka ◽  
M. Suzuki ◽  
S. Maeda ◽  
S. Nozawa ◽  
...  

Abstract. From simultaneous observations of the European incoherent scatter Svalbard radar (ESR) and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS) Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4), the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.


Sign in / Sign up

Export Citation Format

Share Document