scholarly journals Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments

2010 ◽  
Vol 403 (1) ◽  
pp. 439-452 ◽  
Author(s):  
J. A. Rubiño-Martín ◽  
J. Chluba ◽  
W. A. Fendt ◽  
B. D. Wandelt
2017 ◽  
Vol 600 ◽  
pp. A60 ◽  
Author(s):  
Davide Poletti ◽  
Giulio Fabbian ◽  
Maude Le Jeune ◽  
Julien Peloton ◽  
Kam Arnold ◽  
...  

Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable.


1990 ◽  
Vol 139 ◽  
pp. 390-391
Author(s):  
M. E. Kaiser ◽  
E. L. Wright

We present moderate to high signal-to-noise high-resolution (R ≈ 150,000–170,000) optical spectra toward ζ Oph. Gaussian fits to our data indicate a value of the line-width parameter b, of b = 1.4 ± 0.2 km s−1, along this line of sight. When CN is used as an indirect probe of the cosmic microwave background (CMB) temperature, the line profile is used to determine saturation corrections in the line. This affects column density calculations, which are reflected in the excitation temperature. Current measurements of the b-value along this line of sight range from 0.88 ± 0.02 km s−1 (Crane et al. 1986) to 1.3 ± 0.1 km s−1 (Hegyi, Traub, and Carleton 1972). The extreme range of these b-values yield saturation corrections to the CMB temperature that differ by 0.05 K, which is equal to the quoted precision of current measurements. Preliminary analysis of observations toward HD 29647 indicate that TCMB = 2.70 ± 0.14 K at 2.64 mm toward this line of sight.


2010 ◽  
Vol 2010 ◽  
pp. 1-68 ◽  
Author(s):  
N. Bartolo ◽  
S. Matarrese ◽  
A. Riotto

We review in a pedagogical way the present status of the impact of non-Gaussianity (NG) on the cosmic microwave background (CMB) anisotropies. We first show how to set the initial conditions at second order for the CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post inflationary evolution of the CMB anisotropies at second order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples). We also offer a brief summary of other secondary effects. This paper requires basic knowledge of the theory of cosmological perturbations at the linear level.


2002 ◽  
Vol 337 (3) ◽  
pp. 1068-1080 ◽  
Author(s):  
W. J. Percival ◽  
W. Sutherland ◽  
J. A. Peacock ◽  
C. M. Baugh ◽  
J. Bland-Hawthorn ◽  
...  

2017 ◽  
Vol 602 ◽  
pp. A41 ◽  
Author(s):  
F. Couchot ◽  
S. Henrot-Versillé ◽  
O. Perdereau ◽  
S. Plaszczynski ◽  
B. Rouillé d’Orfeuil ◽  
...  

We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.


Sign in / Sign up

Export Citation Format

Share Document