scholarly journals Outward migration of a super-Earth in a disc with outward propagating density waves excited by a giant planet

2012 ◽  
Vol 421 (2) ◽  
pp. 1736-1756 ◽  
Author(s):  
E. Podlewska-Gaca ◽  
J. C. B. Papaloizou ◽  
E. Szuszkiewicz
2021 ◽  
Vol 923 (1) ◽  
pp. L16
Author(s):  
Matthew S. Clement ◽  
Sean N. Raymond ◽  
John E. Chambers

Abstract In spite of substantial advancements in simulating planet formation, the planet Mercury’s diminutive mass and isolated orbit and the absence of planets with shorter orbital periods in the solar system continue to befuddle numerical accretion models. Recent studies have shown that if massive embryos (or even giant planet cores) formed early in the innermost parts of the Sun’s gaseous disk, they would have migrated outward. This migration may have reshaped the surface density profile of terrestrial planet-forming material and generated conditions favorable to the formation of Mercury-like planets. Here we continue to develop this model with an updated suite of numerical simulations. We favor a scenario where Earth’s and Venus’s progenitor nuclei form closer to the Sun and subsequently sculpt the Mercury-forming region by migrating toward their modern orbits. This rapid formation of ∼0.5 M ⊕ cores at ∼0.1–0.5 au is consistent with modern high-resolution simulations of planetesimal accretion. In successful realizations, Earth and Venus accrete mostly dry, enstatite chondrite–like material as they migrate, thus providing a simple explanation for the masses of all four terrestrial planets, the inferred isotopic differences between Earth and Mars, and Mercury’s isolated orbit. Furthermore, our models predict that Venus’s composition should be similar to the Earth’s and possibly derived from a larger fraction of dry material. Conversely, Mercury analogs in our simulations attain a range of final compositions.


2013 ◽  
Vol 8 (S299) ◽  
pp. 218-219
Author(s):  
Min-Kai Lin ◽  
Ryan Cloutier

AbstractGap formation by giant planets in self-gravitating disks may lead to a gravitational edge instability (GEI). We demonstrate this GEI with global 3D and 2D self-gravitating disk-planet simulations using the ZEUS, PLUTO and FARGO hydrodynamic codes. High resolution 2D simulations show that an unstable outer gap edge can lead to outward migration. Our results have important implications for theories of giant planet formation in massive disks.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


1984 ◽  
Vol 75 ◽  
pp. 265-277
Author(s):  
J.B. Holbelg ◽  
W.T. Forrester

ABSTRACTDuring the Voyager 1 and 2 Saturn encounters the ultraviolet spectrometers observed three separate stellar occultations by Saturn's rings. Together these three observations, which sampled the optical depth of the rings at resolutions from 3 to 6 km. can be used to establish a highly accurate distance scale allowing the identification of numerous ring features associated with resonances due to exterior satellites. Three separate observations of an eccentric ringlet near the location of the Titan apsidal resonance are discussed along with other ringlet-resonance associations occurring in the C ring. Density waves occurring in the A and B rings are reviewed and a detailed discussion of the analysis of one of these features is presented.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-161-Pr10-163
Author(s):  
H. Matsukawa ◽  
H. Miyake ◽  
M. Yumoto ◽  
H. Fukuyama

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-129-Pr10-132 ◽  
Author(s):  
J. P. McCarten ◽  
T. C. Jones ◽  
X. Wu ◽  
J. H. Miller ◽  
I. Pirtle ◽  
...  

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-239-Pr10-241
Author(s):  
B. Dóra ◽  
A. Virosztek

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-65-Pr10-67
Author(s):  
N. Markovic ◽  
M. A.H. Dohmen ◽  
H. S.J. van der Zant

Sign in / Sign up

Export Citation Format

Share Document