The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon

2011 ◽  
Vol 23 (7) ◽  
pp. 673-e279 ◽  
Author(s):  
J. M. Hoffman ◽  
N. D. McKnight ◽  
K. A. Sharkey ◽  
G. M. Mawe
1986 ◽  
Vol 64 (7) ◽  
pp. 993-998 ◽  
Author(s):  
Beverley Greenwood ◽  
Stephanie Diamant ◽  
J. S. Davison

The aim of the experiments was to examine, in vitro, the role of the enteric nervous system in the relationship between motor activity and transmural potential difference (PD) in the guinea pig jejunum and colon using the nerve blocking agents tetrodotoxin (TTX) and aconitine. Histological data showed that perfusion of the intestinal segments with gassed Hepes solution was essential for the maintenance of transmural PD. Disruption of the mucosa was associated with a loss of spontaneous fluctuations in transmural PD without any loss of spontaneous motor activity. Under spontaneous conditions, a neural pathway exists linking jejunal and colonic motility with transmural PD. However, in some cases a mechanical link was also apparent, as an attenuated TTX and aconitine–resistant component.


2007 ◽  
Vol 557 (2-3) ◽  
pp. 212-220 ◽  
Author(s):  
Matteo Fornai ◽  
Rocchina Colucci ◽  
Luca Antonioli ◽  
Fabio Baschiera ◽  
Narcisa Ghisu ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A173-A174
Author(s):  
F BASCHIERA ◽  
C BLANDIZZI ◽  
M FOMAI ◽  
M TACCA

1987 ◽  
Vol 65 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
E. Honoré ◽  
M. M. Adamantidis ◽  
B. A. Dupuis ◽  
C. E. Challice ◽  
P. Guilbault

Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 μM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.


2003 ◽  
Vol 547 (2) ◽  
pp. 589-601 ◽  
Author(s):  
David R. Linden ◽  
Keith A. Sharkey ◽  
Gary M. Mawe
Keyword(s):  

2003 ◽  
Vol 551 (3) ◽  
pp. 955-969 ◽  
Author(s):  
T. K Smith ◽  
G. R Oliver ◽  
G. W Hennig ◽  
D. M O'Shea ◽  
P. V. Berghe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document