Calcium channels and excitation–contraction coupling in cardiac cells. I. Two components of contraction in guinea-pig papillary muscle

1987 ◽  
Vol 65 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
E. Honoré ◽  
M. M. Adamantidis ◽  
B. A. Dupuis ◽  
C. E. Challice ◽  
P. Guilbault

Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 μM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.

1987 ◽  
Vol 65 (9) ◽  
pp. 1832-1839 ◽  
Author(s):  
E. Honoré ◽  
M. M. Adamantidis ◽  
B. A. Dupuis ◽  
C. E. Challice ◽  
P. Guilbault

Biphasic contractions were obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) in the presence of 0.3 μM isoproterenol. Mn2+ ions inhibited the two components of contraction in a similar way. Nifedipine and particularly Cd2+ ions specifically inhibited the second component of contraction. Isoproterenol and BAY K 8644 markedly increased the amplitude of the second component (P2) of contraction. Nevertheless, a moderate positive inotropic effect of isoproterenol was found on the first component (P1) of contraction when excitability was restored by 0.2 mM Ba instead of isoproterenol. Acetylcholine and hypoxia decreased the amplitude of the second component of contraction to a greater extent. In the presence of digoxin or Na+-free solution, P1was strongly increased. When sarcoplasmic reticular function was hindered by 1 mM caffeine or in the presence of Ca2+-free Sr2+ solution, digoxin always induced a negative inotropic effect on P2. Inversely in these conditions the transient positive inotropic effect of Na+-free solution was strongly reduced. These results are consistent with the hypothesis that the late component of contraction is triggered by the slow inward Ca2+ current and that the early component is due to Ca2+ release from the sarcoplasmic reticulum.


2003 ◽  
Vol 285 (6) ◽  
pp. H2552-H2562 ◽  
Author(s):  
C. Ian Spencer ◽  
James S. K. Sham

In cardiac cells, evoked Ca2+ releases or spontaneous Ca2+ waves activate the inward Na+/Ca2+ exchange current ( INaCa), which may modulate membrane excitability and arrhythmogenesis. In this study, we examined changes in membrane potential due to INaCa elicited by sarcoplasmic reticulum (SR) Ca2+ release in guinea pig ventricular myocytes using whole cell current clamp, fluorescence, and confocal microscopy. Inhibition of INaCa by Na+-free, Li+-containing Tyrode solution reversibly abbreviated the action potential duration at 90% repolarization (APD90) by 50% and caused SR Ca2+ overload. APD90 was similarly abbreviated in myocytes exposed to the Na+/Ca2+ exchange inhibitor KB-R7943 (5 μM) or after inhibition of SR Ca2+ release with ryanodine (20 μM). In the absence of extracellular Na+, spontaneous SR Ca2+ releases caused minimal changes in resting membrane potential. After the myocytes were returned to Na+-containing solution, the potentiated intracellular Ca2+ concentration ([Ca2+]i) transients dramatically prolonged APD90 and [Ca2+]i oscillations caused delayed and early afterdepolarizations (DADs and EADs). Laser-flash photolysis of caged Ca2+ mimicked the effects of spontaneous [Ca2+]i oscillations, confirming that APD prolongation, DADs, and EADs could be ascribed to intracellular Ca2+ release. These results suggest that Na+/Ca2+ exchange is a major physiological determinant of APD and that INaCa activation by spontaneous SR Ca2+ release/oscillations, depending on the timing, can account for both DADs and EADs during SR Ca2+ overload.


2003 ◽  
Vol 284 (3) ◽  
pp. G392-G398 ◽  
Author(s):  
Edward Parr ◽  
Maria J. Pozo ◽  
Burton Horowitz ◽  
Mark T. Nelson ◽  
Gary M. Mawe

The current study was undertaken to test the existence and possible role of ether-a-go-go-related gene 1 (ERG1) protein K+ channels in gallbladder smooth muscle (GBSM). Transcripts encoding ERG1 were detected in human, mouse, and guinea pig GBSM, and ERG1 immunoreactivity was observed in GBSM cells. In intracellular voltage recordings, addition of E-4031 (100 nM–1 μM) or cisapride (100 nM–2 μM) caused concentration-dependent excitation of guinea pig GBSM that was not affected by 500 nM TTX + 5 μM atropine, and E-4031 also depolarized the resting membrane potential. In muscle strip studies, E-4031 either induced phasic contractions or significantly increased the amplitude of phasic contractions in spontaneously active tissues ( P = 0.001). E-4031 also potentiated bethanechol-induced contractions. In conclusion, ERG1 channels are expressed in the GBSM, where they play a role in excitation-contraction coupling probably by contributing to repolarization of the plateau phase of the action potential and to the resting membrane potential.


1988 ◽  
Vol 255 (4) ◽  
pp. C479-C485 ◽  
Author(s):  
H. Nunez-Duran ◽  
L. Riboni ◽  
E. Ubaldo ◽  
E. Kabela ◽  
L. Barcenas-Ruiz

Mammalian cells specifically internalize some molecular species through receptor-mediated endocytosis (RME). We have used four different experimental protocols to investigate whether ouabain enters cardiac cells of guinea pig atrium through this pathway. First, by electron microscope morphometry we found that ouabain increased endocytic vesicles in atrial cells. Second, by scintillation counting we found that [3H]ouabain uptake by the tissue is decreased by three treatments that decrease RME, i.e., NH4Cl, trifluoperazine, and 16 mM [K+]0. Third, by radioautography at the electron microscope level, we checked that in preceding experiments [3H]ouabain was washed out of plasma membrane after 60-min rinse and interiorized into the cardiac cells. Fourth, isometric tension recordings showed that the positive inotropic effect of ouabain was diminished in the presence of inhibitors, whereas that of a hydrophobic analogue, ouabagenin, was not affected. These results suggest that ouabain enters cardiac cells through RME and also that an intracellular site may, at least in part, be responsible for its inotropic effect.


1988 ◽  
Vol 255 (6) ◽  
pp. C798-C807 ◽  
Author(s):  
D. Y. Wang ◽  
S. W. Chae ◽  
Q. Y. Gong ◽  
C. O. Lee

In the ventricular papillary muscle of guinea pig heart, membrane potential, intracellular sodium activity (aiNa), and twitch force were measured simultaneously and continuously for many hours at stimulation rates of 0, 0.5, 1, 2, 3, 4, 5, and 6 Hz to investigate the relation of aiNa to twitch force and membrane potential both in the steady state and during the changes in these variables. After an increase in stimulation rate, both aiNa and twitch force increased progressively, reaching steady-state levels. The relation between twitch force and aiNa in the steady state was generally sigmoidal over the range of 0.5-5 Hz and steep in the 1- to 4-Hz range. After either increase or decrease in stimulation rate, the time course of change in aiNa was exponential and similar to that of change in twitch force. Moreover, the force-aiNa relation observed after increase in stimulation rate from 0.5 to 3 Hz resembled that observed after decrease in the rate from 3 to 0.5 Hz, indicating an absence of hysteresis in the relation. The results suggest that an increase in aiNa is an important factor involved in the force staircase. As stimulation rate was increased from 0.5 to higher rates (5 or 6 Hz) and then decreased back to 0.5 Hz, a hysteresis phenomenon was observed in the relation between twitch force and aiNa. This suggests that some secondary factor may alter the relation between twitch force and aiNa. As stimulation rate increased and aiNa rose, the steady-state diastolic membrane potential hyperpolarized. This result is consistent with the view that an increase in aiNa enhances the electrogenic Na+-K+ pump and hyperpolarizes the cell membrane.


1986 ◽  
Vol 64 (9) ◽  
pp. 1153-1159 ◽  
Author(s):  
E. Honoré ◽  
C. E. Challice ◽  
P. Guilbault ◽  
B. Dupuis

Biphasic contractions were produced in guinea pig papillary muscle by inducing partial depolarization in a K+-rich solution (22 mM) containing 10−6 M isoproterenol. However, when the same conditions were applied to frog and rat, monophasic contractions were obtained. In the case of guinea pig, an increase in the beating frequency produced an increase in amplitude of the first component and a reduction of the second, while in frog and rat, only a decrease in the amplitude of contractions was recorded. Caffeine (10−3 M) eliminated the first component and increased the second in guinea pig, while in the case of rat and frog it decreased the amplitude of contractions. Procaine (10−3 M) suppressed the first component and decreased the second one. The contraction in frog appears to be similar to the second component of contraction in guinea pig, while in rat, the contraction is comparable with the first component in guinea pig. It is suggested that the calcium ions which activate the two components of contraction in guinea pig under the given experimental conditions may arise from two different sources.


1974 ◽  
Vol 52 (3) ◽  
pp. 404-423 ◽  
Author(s):  
Esther R. Anderson ◽  
J. G. Foulks

Substitution of acetate for external Cl produced a large persistent increase in the resting membrane potential (R.M.P.) of frog ventricle and a somewhat steeper relation between membrane potential (M.P.) and [K]o (external K concentration). An increased K conductance or reduced permeability to other ions could account for most of these results, but not for hyperpolarizations as great as −110 mV. Potentials of this size suggested a contribution from an active electrogenic transport system, but they were unaffected by several treatments including exposure to ouabain (10−7 M − 5 × 10−6 M), dinitrophenol (10−6 M, 10−5 M) or 30 mM tetraethylammonium.Acetate caused a prolongation of the action potential (A.P.) and a change in its configuration. Acetate also enhanced twitch tension and increased the rate of tension development. Similar changes are produced by removal of [K]o. The effects of both acetate and K removal on A.P. configuration were prevented by a reduced rate of stimulation.When acetate-induced hyperpolarization was reversed by raising [K]o to 10–15 mM, the configuration of the A.P. resembled that of controls and twitch tension did not increase. Thus, acetate-induced changes in the shape of the A.P. and in twitch tension appeared to be secondary to the increase in R.M.P. However, the relationship does not seem to be direct because these changes were temporary, whereas hyperpolarization was persistent.The character of the acetate-induced changes in A.P. configuration, and the dependence on stimulation rate and [Ca]o (external Ca concentration), suggested a raised [Ca]i (internal Ca concentration) and a possible increase in Ca influx. However, addition of Mn to the acetate solution did not prevent initial acetate-induced changes in the shape of the A.P. plateau and in twitch tension. Also in the absence of [Ca]o, disappearance of twitch tension was slowed by acetate. But acetate decreased the contracture tension produced in response to either increased [K]o or Na removal. Acetate may cause a redistribution of Ca within the cell.


Sign in / Sign up

Export Citation Format

Share Document