Methyl Bromide Fumigation of Soil Infested by the Fungus Causing Brown Root Rot Complex of Tomatoes and by the Potato Cyst Nematode

1967 ◽  
Vol 16 (4) ◽  
pp. 148-152 ◽  
Author(s):  
G. L. James ◽  
N. G. M. Hague
2005 ◽  
Vol 27 (1) ◽  
pp. 64-70 ◽  
Author(s):  
C.R. Hollingsworth ◽  
F.A. Gray ◽  
R.W. Groose
Keyword(s):  
Root Rot ◽  

2017 ◽  
Vol 113 ◽  
pp. 51-55 ◽  
Author(s):  
Magdalena Święcicka ◽  
Waldemar Skowron ◽  
Piotr Cieszyński ◽  
Joanna Dąbrowska-Bronk ◽  
Mateusz Matuszkiewicz ◽  
...  

1982 ◽  
Vol 99 (2) ◽  
pp. 325-328 ◽  
Author(s):  
M. F. B. Dale ◽  
M. S. Phillips

SUMMARYThe inheritance of resistance to Globodera pallida was studied in seedling progenies derived from Solanum tuberosum ssp. andigena CPC 2802 (H3) and S. vernei and compared with resistance to G. rostochiensis derived from S. tuberosum ssp. andigena CPC 1673(H1). The resistance of CPC 2802 was originally thought to be due to a major gene (H3), but results presented here demonstrate that it and that derived from S. vernei are inherited in a similar manner quite distinct from the major gene inheritance from CPC 1673 (HI). It is concluded that the resistances derived from CPC 2802 and S. vernei are both polygenic in nature. These findings are discussed in relation to breeding policy and screening methods.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


Author(s):  
Tse‐Yen Liu ◽  
Chao‐Han Chen ◽  
Yu‐Liang Yang ◽  
Isheng J. Tsai ◽  
Ying‐Ning Ho ◽  
...  

2021 ◽  
Author(s):  
Janet Rowe

Abstract G. rostochiensis is a world wide pest of temperate areas, including both temperate countries and temperate regions of tropical countries, for example India's Nigrilis region. Distribution is linked to that of the potato crop. Potato cyst nematode is considered to have originated from the Andes region of South America, from where it spread to Europe with potatoes. The ease with which it has been transported across continents proves what a resilient pest it is. The cyst form which adheres to host roots, stolons and tubers and to soil particles during transportation gives rise to new infestations where climate and food source are both available and favourable. Secondary means of dispersal is through the movement of contaminated farm machinery, farming implements and contaminated footwear. Cysts are also successfully spread by wind dispersal, during winter storms or sand storms where top soil is redistributed. Rain which causes flooding and water to run off fields into trenches or irrigation channels also redistributes cysts into adjoining areas.


Sign in / Sign up

Export Citation Format

Share Document