The ability of rhizosphere bacteria isolated from nematode host and non-host plants to influence the hatch in vitro of the two potato cyst nematode species, Globodera rostochiensis and G. pallida

Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .

Nematology ◽  
2012 ◽  
Vol 14 (7) ◽  
pp. 869-873 ◽  
Author(s):  
Ayano Sasaki-Crawley ◽  
Rosane Curtis ◽  
Michael Birkett ◽  
Apostolos Papadopoulos ◽  
Rod Blackshaw ◽  
...  

This paper demonstrates a simple novel in vitro method using Pluronic F-127 aqueous solution to study the development of the potato cyst nematode, Globodera pallida, in Solanum spp. without any need for sterilisation of either the plants or the nematodes. In this study, this method was successfully applied to comparative studies on the development of G. pallida in Solanum tuberosum (potato) or S. sisymbriifolium (sticky nightshade). The protocol described here could be useful for screening transgenic plants or different plant cultivars/species for their ability to allow development not only of G. pallida but also any other plant-parasitic nematodes.


2021 ◽  
Author(s):  
Joris J.M. van Steenbrugge ◽  
Sven van den Elsen ◽  
Martijn Holterman ◽  
Jose L. Lozano-Torres ◽  
Vera Putker ◽  
...  

Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are an essential handle for PCN control. However, the poor delineation of G. pallida pathotypes hampers the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCN after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression (DOG boxes) were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Re-sequencing of PCN populations with deviant virulence characteristics will allow for the linking of these characteristics with the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.


2012 ◽  
Vol 38 (6) ◽  
pp. 795-801 ◽  
Author(s):  
Kevin Farnier ◽  
Marie Bengtsson ◽  
Paul G. Becher ◽  
Johanna Witzell ◽  
Peter Witzgall ◽  
...  

Nematology ◽  
2011 ◽  
Vol 13 (7) ◽  
pp. 869-885 ◽  
Author(s):  
Wiseborn B. Danquah ◽  
Matthew A. Back ◽  
Ivan G. Grove ◽  
Patrick P.J. Haydock

AbstractThe in vitro nematicidal effects of an aqueous garlic extract, salicylaldehyde, a nonylphenol ethoxylate surfactant and a formulation containing these constituents were evaluated against the potato cyst nematode, Globodera pallida. Newly hatched, infective second-stage juveniles (J2) were placed for 24, 48 and 72 h in solutions containing concentrations of the formulation from 30.080.0 μl l–1 with 20% (v/v) potato root leachate and sterile distilled water controls. The garlic extract, salicylaldehyde and surfactant treatments were assessed at concentrations proportional to their occurrence in the formulation. Hatching assays involved a series of experiments in which G. pallida cysts were incubated for 8 weeks in potato root leachate solution containing different concentrations of the test substances. A second set of experiments involved incubating cysts in different concentrations of the test substances for 2, 4 and 8 weeks prior to hatching in potato root leachate solution to determine how prior exposure to these substances influences hatching and in-egg viability. The formulation caused 100% mortality at 75.0 μl l–1 with an LC50 of 43.6 μl l–1 after 24 h exposure. Salicylaldehyde was the most toxic constituent of the formulation with an LC50 of 6.5 μl l–1 after 24 h, while the garlic extract achieved 50% J2 mortality at 983.0 μl l–1, demonstrating that the formulation and salicylaldehyde are more toxic to G. pallida in vitro than oxamyl but less toxic when compared with aldicarb. The surfactant showed no dose-dependent toxic effects on J2 when compared with the controls. Emergence of J2 from the cysts was significantly reduced by concentrations of the formulation above 688.0 μl l–1 and its equivalent concentration of salicylaldehyde, while concentrations of the formulation above 2752.0 μl l–1 and the corresponding salicylaldehyde concentrations resulted in complete irreversible hatch inhibition. Concentrations of the garlic extract below 137.6 μl l–1 caused 26% more J2 hatch in comparison to the potato root leachate solution. This study has shown that salicylaldehyde is more toxic to nematodes than the garlic extract, and is the first report of a hatch stimulatory effect of a garlic extract on G. pallida under in vitro conditions.


Nematology ◽  
2017 ◽  
Vol 19 (4) ◽  
pp. 389-402 ◽  
Author(s):  
Claire Wood ◽  
David M. Kenyon ◽  
Julia M. Cooper

The ability of isothiocyanates to suppressGlobodera pallidawas evaluated throughin vitroassays. Several isothiocyanates increased juvenile mortality, the most effective being allyl isothiocyanate, which caused 100% mortality at both 25 and 50 ppm after 72 and 24 h exposure, respectively. In a hatching assay, allyl isothiocyanate was able to suppress hatch; in addition, replenishing allyl isothiocyanate every 3 days increased hatch suppression, and viability staining indicated that egg mortality was increased. Allyl isothiocyanate above concentrations of 50 ppm significantly affected both hatch suppression and mortality. Differing effects of isothiocyanates onG. pallidasuggest that their toxicity depends on the pest of interest and this study shows that allyl isothiocyanate is a good candidate for the control of potato cyst nematodes using biofumigation.


1982 ◽  
Vol 99 (2) ◽  
pp. 325-328 ◽  
Author(s):  
M. F. B. Dale ◽  
M. S. Phillips

SUMMARYThe inheritance of resistance to Globodera pallida was studied in seedling progenies derived from Solanum tuberosum ssp. andigena CPC 2802 (H3) and S. vernei and compared with resistance to G. rostochiensis derived from S. tuberosum ssp. andigena CPC 1673(H1). The resistance of CPC 2802 was originally thought to be due to a major gene (H3), but results presented here demonstrate that it and that derived from S. vernei are inherited in a similar manner quite distinct from the major gene inheritance from CPC 1673 (HI). It is concluded that the resistances derived from CPC 2802 and S. vernei are both polygenic in nature. These findings are discussed in relation to breeding policy and screening methods.


Nematology ◽  
2001 ◽  
Vol 3 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Peter Jones ◽  
Ken Devine

AbstractThe exogenous application to three Globodera pallida-infested fields of tomato root leachate (TRL) containing hatching factors increased nematode hatch and in-egg mortality, particularly in a highly organic soil, and in a sandy but not in a clay soil. The most active concentrations of TRL (7.5-12.5 mg m-2) resulted in a reduction of between 69 and 79% in the number of viable eggs per cyst recovered 12 weeks after TRL application. At high hatching factor concentrations, supra-optimal inhibition of both hatch and in-egg mortality was observed; generally, hatch and in-egg mortality exhibited similar dosage-responses to TRL. A significant TRL dosage-hatch response was observed at 4 weeks after TRL application only in the sandy soil. In vitro, a G. pallida population exhibiting moderate hatch gave similar hatching and in-egg mortality responses as in the field experiment. The response of the PCN populations in vitro was found to be dependent on the physiological state of the egg/juvenile complex, with egg populations in diapause responding to the presence of natural and artificial hatching factors by exhibiting increased in-egg mortality but not increased hatch. The results are discussed in relation to novel G. pallida control measures.


2021 ◽  
pp. 394-399
Author(s):  
Matthias Daub

Abstract The beet cyst nematode (BCN) was one of the first discovered plant parasitic nematodes. Heterodera schachtii was observed in 1859 in Halle in Central Germany by the botanist Herman Schacht and described later by Adolf Schmidt in 1871, who named this cyst nematode species after its original discoverer. Partly due to the lack of knowledge about the effect of sugar beet monocultures on the population build-up of BCN, this nematode had a devastating impact on sugar production in 1876 that led to the shutdown of 24 sugar factories in Germany. This chapter discusses the economic importance, distribution, host range, damage symptoms, biology and life cycle, interactions with other nematodes and pathogens, recommended integrated management, and management optimization of H. schachtii. Future research requirements and future developments are also mentioned.


Sign in / Sign up

Export Citation Format

Share Document