Production and characterization of single-spore isolates of Plasmodiophora brassicae

1985 ◽  
Vol 34 (2) ◽  
pp. 287-292 ◽  
Author(s):  
E. S. SCOTT
Plant Disease ◽  
2021 ◽  
Author(s):  
Mingcan Lv ◽  
Yifan Liu ◽  
Yue Wu ◽  
Jing Zhang ◽  
Xuyao Liu ◽  
...  

Clubroot, caused by Plasmodiophora brassicae, is a soil-borne disease that occurs in cruciferous crops worldwide. P. brassicae usually exists as a mixture of several pathotypes, which has hampered the research on resistance mechanisms of cruciferous crops against P. brassicae. In this study, clubroot galls were collected from a field in Shenyang, China, as a pathogen source to develop an efficient protocol for a single-spore isolation system of P. brassicae by optimizing the seedling age for inoculation, host inoculation method, and plant culture method. The operational steps of the single-spore isolation method were optimized as follows: the use of two-day-old seedlings for inoculation, substituting a cryobox (100 × 2.0 mL vials) for culture dishes, the addition of nutrient solution culture, and microscopic observations of single spores. The rate of infection success was substantially improved, and single-spore isolates of four pathotypes: 4, 8, 9, and 11, were acquired in this system. Subsequently, the optimized system was used to isolate and characterize the pathotypes of single-spore isolates of P. brassicae collected from five fields in regions in China. Approximately 4 to 9 pathotypes were isolated from each region. Among these, pathotype 4 was the most prevalent. This study provides a source of valuable information that can eventually be used for the genetic analysis of host–P. brassicae interaction.


2017 ◽  
Vol 1 (1) ◽  
pp. 74-84
Author(s):  
Ahmad Riduan ◽  
Rainiyati Rainiyati ◽  
Yulia Alia

Every plant rhizospheres in any ecosystem there are various living microorganisms including Arbuscular Mycorrhizae Fungi (AMF).  An isolation and characterization is required to investigate the species or type of the AMF. This research was aimed at studying the isolation and characterization of AMF sporulation in soybean rhizospheres in Jambi Province. The results of evaluation on soil samples before trapping showed that there are spores from three genus of AMF twelve types Glomus , two types Acaulospora and one type of Enthrophospora.  Following single spore culture in soybean rhizosphere, 5 spore types were obtained:  Glomus sp-1, Glomus sp-4, Glomus sp-7, Glomus sp-8 Glomus sp-10.


Plant Disease ◽  
2021 ◽  
Author(s):  
Homa Askarian ◽  
Alireza Akhavan ◽  
Leonardo Galindo González ◽  
Sheau-Fang Hwang ◽  
Stephen Ernest Strelkov

Clubroot, caused by Plasmodiophora brassicae Woronin, is a significant threat to the canola (Brassica napus L.) industry in Canada. Clubroot resistance has been overcome in more than 200 fields since 2013, representing one of the biggest challenges to sustainable canola production. The genetic structure of 36 single-spore isolates derived from 12 field isolates of P. brassicae collected before and after the introduction of clubroot resistant (CR) canola cultivars (2005-2014) was evaluated by simple sequence repeat (SSR) marker analysis. Polymorphisms were detected in 32 loci with the identification of 93 distinct alleles. A low level of genetic diversity was found among the single-spore isolates. Haploid linkage disequilibrium and number of migrants suggested that recombination and migration were rare or almost absent in the tested P. brassicae population. A relatively clear relationship was found between the genetic structure and virulence phenotypes of the pathogen as defined on the differential hosts of Somé et al., Williams and the Canadian Clubroot Differential (CCD) set. Although genetic variability within each pathotype group, as classified on each differential system, was low, significant genetic differentiation was observed among the pathotypes. The highest correlation between genetic structure and virulence was found among matrices produced with genetic data and the hosts of the CCD set, with a threshold index of disease of 50% to distinguish susceptible from resistant reactions. Genetically homogeneous single-spore isolates provided a more complete and clearer picture of the population genetic structure of P. brassicae, and the results suggest some promise for the development of pathotype-specific primers.


Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Homa Askarian ◽  
Alireza Akhavan ◽  
Victor P. Manolii ◽  
Tiesen Cao ◽  
Sheau-Fang Hwang ◽  
...  

Clubroot, caused by Plasmodiophora brassicae Woronin, is an important disease of canola (Brassica napus L.) that is managed mainly by planting clubroot-resistant (CR) cultivars. Field isolates of P. brassicae can be heterogeneous mixtures of various pathotypes, making assessments of the genetics of host–pathogen interactions challenging. Thirty-four single-spore isolates were obtained from nine field isolates of the pathogen collected from CR canola cultivars. The virulence patterns of the single-spore and field isolates were assessed on the 13 host genotypes of the Canadian Clubroot Differential (CCD) set, which includes the differentials of Williams and Somé et al. Indices of disease (IDs) severity of 25, 33, and 50% (±95% confidence interval) were compared as potential thresholds to distinguish between resistant and susceptible reactions, with an ID of 50% giving the most consistent responses for pathotype classification purposes. With this threshold, 13 pathotypes could be distinguished based on the CCD system, 7 on the differentials of Williams, and 3 on the hosts of Somé et al. The highest correlations were observed among virulence matrices generated using the three threshold IDs on the CCD set. Genetically homogeneous single-spore isolates gave a clearer profile of the P. brassicae pathotype structure. Novel pathotypes, not reported in Canada previously, were identified among the isolates. This large collection of single-spore isolates can serve as a reference in screening and breeding for clubroot resistance.


2018 ◽  
Vol 108 (12) ◽  
pp. 1486-1492 ◽  
Author(s):  
Jing Zheng ◽  
Xuliang Wang ◽  
Qian Li ◽  
Shu Yuan ◽  
Shiqing Wei ◽  
...  

Clubroot disease is an important disease on cruciferous crops caused by Plasmodiophora brassicae infections. The pathotypes have been classified based on the reactions of differential hosts. However, molecular markers of particular pathotypes for P. brassicae are limited. In this study, we found five genetic markers in association with different pathotypes. Different gene expression patterns among different pathotypes (P4, P7, P9, and P11) were assayed according to the transcriptome data. The assay indicated that molecular markers PBRA_007750 and PBRA_009348 could be used to distinguish P11 from P4, P7, and P9; PBRA_009348 and Novel342 could distinguish P9 from P4, P7, and P11; and PBRA_008439 and Novel342 could represent a kind of P4. Polymerase chain reaction cycles ranging from 25 to 30 were able to identify the predominant pathotype in general. Therefore, these molecular markers would be a valuable tool to identify and discriminate pathotypes in P. brassicae population.


1996 ◽  
Vol 45 (3) ◽  
pp. 432-439 ◽  
Author(s):  
A. SOME ◽  
M. J. MANZANARES ◽  
F. LAURENS ◽  
F. BARON ◽  
G. THOMAS ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54745 ◽  
Author(s):  
Katsunori Hatakeyama ◽  
Keita Suwabe ◽  
Rubens Norio Tomita ◽  
Takeyuki Kato ◽  
Tsukasa Nunome ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document