scholarly journals Modified Human Beta 2-Microglobulin (desLys58) Displays Decreased Affinity for the Heavy Chain of MHC Class I and Induces Nitric Oxide Production and Apoptosis

2009 ◽  
Vol 69 (3) ◽  
pp. 203-212 ◽  
Author(s):  
M. Wang ◽  
L. Harhaji ◽  
K. Lamberth ◽  
M. Harndahl ◽  
S. Buus ◽  
...  
1991 ◽  
Vol 98 (4) ◽  
pp. 559-565
Author(s):  
C. Dargemont ◽  
D. Dunon ◽  
J. Salamero ◽  
M.A. Deugnier ◽  
J. Davoust ◽  
...  

Major histocompatibility complex (MHC) class I antigens are constituted of dimers consisting of a peripheral light chain, beta 2-microglobulin (beta 2m) and a transmembrane heavy chain whose cell surface expression depends on its assembly with beta 2m. In contrast, soluble beta 2m can be secreted in the absence of heavy chain expression. The presence of beta 2m in medium conditioned by a rat thymic epithelial cell line, IT45-R1 (IT45) prompted us to investigate whether beta 2m could be secreted by cells that express MHC class I antigens. IT45 cells produce three to five times more beta 2m in the culture supernatant than another rat thymic epithelial cell line, IT26-R21 (IT26). The IT45 cell line exported beta 2m through a constitutive pathway of secretion, as indicated by the kinetics of production and localization of intracellular beta 2m. Although cells from the IT45 cell line expressed a much higher amount of beta 2m as compared to IT26 and NBT II cells (a rat bladder epithelial cell line), all three of these cell lines expressed the same amount of membrane and intracellular MHC class I heavy chain. These data are thus consistent with a constitutive secretion of beta 2m dependent upon an overexpression of MHC class I light chain as compared to the heavy chain. The amount of beta 2m mRNA and the ratio of beta 2m versus MHC class I heavy chain transcripts were higher in IT45 than in IT26 cells, indicating that overexpression of beta 2m in IT45 cells could be due to an enhanced level of beta 2m mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 115 (4) ◽  
pp. 959-970 ◽  
Author(s):  
F Lévy ◽  
R Larsson ◽  
S Kvist

We have translated major histocompatibility complex (MHC) class I heavy chains and human beta 2-microglobulin in vitro in the presence of microsomal membranes and a peptide from the nucleoprotein of influenza A. This peptide stimulates assembly of HLA-B27 heavy chain and beta 2-microglobulin about fivefold. By modifying this peptide to contain biotin at its amino terminus, we could precipitate HLA-B27 heavy chains with immobilized streptavidin, thereby directly demonstrating class I heavy chain-peptide association under close to physiological conditions. The biotin-modified peptide stimulates assembly to the same extent as the unmodified peptide. Both peptides bind to the same site on the HLA-B27 molecule. Immediately after synthesis of the HLA-B27 heavy chain has been completed, it assembles with beta 2-microglobulin and peptide. These interactions occur in the lumen of the microsomes (endoplasmic reticulum), demonstrating that the peptide must cross the microsomal membrane in order to promote assembly. The transfer of peptide across the microsomal membrane is a rapid process, as peptide binding to heavy chain-beta 2-microglobulin complexes is observed in less than 1 min after addition of peptide. By using microsomes deficient of beta 2-microglobulin (from Daudi cells), we find a strict requirement of beta 2-microglobulin for detection of peptide interaction with the MHC class I heavy chain. Furthermore, we show that heavy chain interaction with beta 2-microglobulin is likely to precede peptide binding. Biotin-modified peptides are likely to become a valuable tool in studying MHC antigen interaction and assembly.


2014 ◽  
Vol 49 (3) ◽  
pp. 93-112 ◽  
Author(s):  
Chamilani Nikapitiya ◽  
Sung-Ju Jung ◽  
Myung-Hwa Jung ◽  
Jun-Young Song ◽  
Jehee Lee ◽  
...  

1991 ◽  
Vol 112 (6) ◽  
pp. 1099-1115 ◽  
Author(s):  
E Degen ◽  
D B Williams

Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.


1992 ◽  
Vol 175 (6) ◽  
pp. 1653-1661 ◽  
Author(s):  
E Degen ◽  
M F Cohen-Doyle ◽  
D B Williams

Previously, we showed that an 88-kD protein (p88) associates rapidly and quantitatively with newly synthesized murine major histocompatibility complex class I molecules within the endoplasmic reticulum (ER). This interaction is transient and dissociation of p88 appears to be rate limiting for transport of class I molecules from the ER to the Golgi apparatus. In this report, we examine the relationship between p88 interaction and assembly of the ternary complex of class I heavy chain beta 2-microglobulin (beta 2m), and peptide ligand. In both murine and human beta 2m-deficient cells, in which little or no transport of class I heavy chains is observed, p88 remained associated with intracellular heavy chains throughout their lifetime. In murine RMA-S cells, which are apparently defective in accumulating peptide ligands for class I within the ER, prolonged association of p88 with "empty" heavy chain-beta 2m heterodimers was also observed. However, p88 dissociated slowly in parallel with the slow rate of ER to Golgi transport of empty class I molecules in these cells. The close correlation between p88 association and impaired class I transport suggests that p88 functions to retain incompletely assembled class I molecules in the ER. We propose that conformational changes in class I heavy chains induced by the binding of both beta 2m and peptide are required for efficient p88 dissociation and subsequent class I transport.


1993 ◽  
Vol 13 (11) ◽  
pp. 6629-6639
Author(s):  
M Lonergan ◽  
A Dey ◽  
K G Becker ◽  
P D Drew ◽  
K Ozato

Expression of the beta 2-microglobulin (beta 2-m) and major histocompatibility complex (MHC) class I genes is coordinately regulated. By ligation-mediated polymerase chain reaction, we have analyzed in vivo factor binding to the promoter region of the murine beta 2-m gene. In adult spleen, in which beta 2-m is expressed, strong protection was found in three elements. Two of these elements, the beta 2-m NF-kappa B binding site and the interferon consensus sequence, are homologous to the regulatory elements of the MHC class I genes and were also found to be protected in spleen. A third protected element, PAM, identified in this work, is unique to the beta 2-m gene. None of the elements showed protection in brain tissue, in which neither the beta 2-m nor the MHC class I gene is expressed. In vivo footprinting was also performed with F9 embryonal carcinoma cells, in which expression of the beta 2-m and MHC class I genes is induced at a low level only upon stimulation with retinoic acid (RA). No in vivo protection was detected before and after RA treatment of F9 cells, indicating that RA induction of beta 2-m (and MHC class I) expression occurs without detectable in vivo factor occupancy, whereas EL4 T lymphocytes expressing beta 2-m at a high level exhibited strong protection similar to that in spleen. Despite the lack of in vivo occupancy, the nuclear factors specific for each of the three elements were present in brain tissue and F9 cells as well as in spleen tissue and EL4 cells. We show that PAM, an element identified by its in vivo protection, binds nuclear factors ranging from 40 to 50 kDa in size and is capable of enhancing transcription of a reporter in F9 and other cells. Taken together, these results indicate that in vivo factor occupancy for the beta 2-m and MHC class I promoters is coordinated and occurs through a mechanism other than mere expression of relevant factors.


1995 ◽  
Vol 181 (2) ◽  
pp. 787-792 ◽  
Author(s):  
H Martien van Santen ◽  
A Woolsey ◽  
P G Rickardt ◽  
L Van Kaer ◽  
E J Baas ◽  
...  

Mice harboring a deletion of the gene encoding the transporter associated with antigen presentation-1 (TAP1) are impaired in providing major histocompatibility complex (MHC) class I molecules with peptides of cytosolic origin and lack stable MHC class I cell surface expression. They consequently have a strongly reduced number of CD8+ T cells. To examine whether selection of CD8+ T cells is dependent on TAP-dependent peptides, we partially restored MHC class I cell surface expression in TAP1-deficient mice by introduction of human beta 2-microglobulin. We show that selection of functional CD8+ T cells can be augmented in vivo in the absence of TAP1-dependent peptides.


2007 ◽  
Vol 77 (2) ◽  
pp. 274-279 ◽  
Author(s):  
Joanne C. Cooper ◽  
Gillian B. Dealtry ◽  
Mohamed Abdelrahman Ahmed ◽  
Petra C. Arck ◽  
Burghard F. Klapp ◽  
...  

1993 ◽  
Vol 13 (11) ◽  
pp. 6629-6639 ◽  
Author(s):  
M Lonergan ◽  
A Dey ◽  
K G Becker ◽  
P D Drew ◽  
K Ozato

Expression of the beta 2-microglobulin (beta 2-m) and major histocompatibility complex (MHC) class I genes is coordinately regulated. By ligation-mediated polymerase chain reaction, we have analyzed in vivo factor binding to the promoter region of the murine beta 2-m gene. In adult spleen, in which beta 2-m is expressed, strong protection was found in three elements. Two of these elements, the beta 2-m NF-kappa B binding site and the interferon consensus sequence, are homologous to the regulatory elements of the MHC class I genes and were also found to be protected in spleen. A third protected element, PAM, identified in this work, is unique to the beta 2-m gene. None of the elements showed protection in brain tissue, in which neither the beta 2-m nor the MHC class I gene is expressed. In vivo footprinting was also performed with F9 embryonal carcinoma cells, in which expression of the beta 2-m and MHC class I genes is induced at a low level only upon stimulation with retinoic acid (RA). No in vivo protection was detected before and after RA treatment of F9 cells, indicating that RA induction of beta 2-m (and MHC class I) expression occurs without detectable in vivo factor occupancy, whereas EL4 T lymphocytes expressing beta 2-m at a high level exhibited strong protection similar to that in spleen. Despite the lack of in vivo occupancy, the nuclear factors specific for each of the three elements were present in brain tissue and F9 cells as well as in spleen tissue and EL4 cells. We show that PAM, an element identified by its in vivo protection, binds nuclear factors ranging from 40 to 50 kDa in size and is capable of enhancing transcription of a reporter in F9 and other cells. Taken together, these results indicate that in vivo factor occupancy for the beta 2-m and MHC class I promoters is coordinated and occurs through a mechanism other than mere expression of relevant factors.


Sign in / Sign up

Export Citation Format

Share Document